R2-P2 rapid-robotic phosphoproteomics enables multidimensional cell signaling studies

被引:99
作者
Leutert, Mario [1 ]
Rodriguez-Mias, Ricard A. [1 ]
Fukuda, Noelle K. [1 ]
Villen, Judit [1 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
基金
瑞士国家科学基金会;
关键词
DIA; MAPK; mass spectrometry; phosphoproteomics; signaling; SAMPLE PREPARATION; FILAMENTOUS GROWTH; PROTEOMICS; TEC1; SPECIFICITY; SCH9; PHOSPHORYLATION; IDENTIFICATION; PLATFORM; REVEALS;
D O I
10.15252/msb.20199021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent developments in proteomics have enabled signaling studies where > 10,000 phosphosites can be routinely identified and quantified. Yet, current analyses are limited in throughput, reproducibility, and robustness, hampering experiments that involve multiple perturbations, such as those needed to map kinase-substrate relationships, capture pathway crosstalks, and network inference analysis. To address these challenges, we introduce rapid-robotic phosphoproteomics (R2-P2), an end-to-end automated method that uses magnetic particles to process protein extracts to deliver mass spectrometry-ready phosphopeptides. R2-P2 is rapid, robust, versatile, and high-throughput. To showcase the method, we applied it, in combination with data-independent acquisition mass spectrometry, to study signaling dynamics in the mitogen-activated protein kinase (MAPK) pathway in yeast. Our results reveal broad and specific signaling events along the mating, the high-osmolarity glycerol, and the invasive growth branches of the MAPK pathway, with robust phosphorylation of downstream regulatory proteins and transcription factors. Our method facilitates large-scale signaling studies involving hundreds of perturbations opening the door to systems-level studies aiming to capture signaling complexity.
引用
收藏
页数:20
相关论文
共 43 条
[1]   Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes [J].
Abelin, Jennifer G. ;
Patel, Jinal ;
Lu, Xiaodong ;
Feeney, Caitlin M. ;
Fagbami, Lola ;
Creech, Amanda L. ;
Hu, Roger ;
Lam, Daniel ;
Davison, Desiree ;
Pino, Lindsay ;
Qiao, Jana W. ;
Kuhn, Eric ;
Officer, Adam ;
Li, Jianxue ;
Abbatiello, Susan ;
Subramanian, Aravind ;
Sidman, Richard ;
Snyder, Evan ;
Carr, Steven A. ;
Jaffe, Jacob D. .
MOLECULAR & CELLULAR PROTEOMICS, 2016, 15 (05) :1622-1641
[2]   Multisite Phosphorylation of the Saccharomyces cerevisiae Filamentous Growth Regulator Tec1 Is Required for its Recognition by the E3 Ubiquitin Ligase Adaptor Cdc4 and Its Subsequent Destruction In Vivo [J].
Bao, Marie Z. ;
Shock, Teresa R. ;
Madhani, Hiten D. .
EUKARYOTIC CELL, 2010, 9 (01) :31-36
[3]   Protein Aggregation Capture on Microparticles Enables Multipurpose Proteomics Sample Preparation [J].
Batth, Tanveer S. ;
Tollenaere, Maxim A. X. ;
Ruther, Patrick ;
Gonzalez-Franquesa, Alba ;
Prabhakar, Bhargav S. ;
Bekker-Jensen, Simon ;
Deshmukh, Atul S. ;
Olsen, Jesper, V .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (05) :1027-1035
[4]   A probability-based approach for high-throughput protein phosphorylation analysis and site localization [J].
Beausoleil, Sean A. ;
Villen, Judit ;
Gerber, Scott A. ;
Rush, John ;
Gygi, Steven P. .
NATURE BIOTECHNOLOGY, 2006, 24 (10) :1285-1292
[5]   MAPK signaling specificity: it takes two to tango [J].
Breitkreutz, A ;
Tyers, M .
TRENDS IN CELL BIOLOGY, 2002, 12 (06) :254-257
[6]   MAPK specificity in the yeast pheromone response independent of transcriptional activation [J].
Breitkreutz, A ;
Boucher, L ;
Tyers, M .
CURRENT BIOLOGY, 2001, 11 (16) :1266-+
[7]   The TEA Transcription Factor Tec1 Links TOR and MAPK Pathways to Coordinate Yeast Development [J].
Brueckner, Stefan ;
Kern, Sandra ;
Birke, Raphael ;
Saugar, Irene ;
Ulrich, Helle D. ;
Moesch, Hans-Ulrich .
GENETICS, 2011, 189 (02) :479-U533
[8]   Spatial Tissue Proteomics Quantifies Inter- and Intratumor Heterogeneity in Hepatocellular Carcinoma (HCC) [J].
Buczak, Katarzyna ;
Ori, Alessandro ;
Kirkpatrick, Joanna M. ;
Holzer, Kerstin ;
Dauch, Daniel ;
Roessler, Stephanie ;
Endris, Volker ;
Lasitschka, Felix ;
Parca, Luca ;
Schmidt, Alexander ;
Zender, Lars ;
Schirmacher, Peter ;
Krijgsveld, Jeroen ;
Singer, Stephan ;
Beck, Martin .
MOLECULAR & CELLULAR PROTEOMICS, 2018, 17 (04) :810-825
[9]   Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome [J].
Cagnetta, Roberta ;
Frese, Christian K. ;
Shigeoka, Toshiaki ;
Krijgsveld, Jeroen ;
Holt, Christine E. .
NEURON, 2018, 99 (01) :29-+
[10]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920