On a generalization of Kelly's combinatorial lemma

被引:3
|
作者
Ben Amira, Aymen [1 ]
Dammak, Jamel [1 ]
Si Kaddour, Hamza [2 ]
机构
[1] Fac Sci Sfax, Dept Math, Sfax, Tunisia
[2] Univ Lyon 1, Dept Math, ICJ, F-69622 Villeurbanne, France
关键词
Set; matrix; graph; tournament; isomorphism; INCIDENCE MATRICES; BINARY RELATIONS; ISOMORPHIC TYPES; RESTRICTIONS; TOURNAMENTS; GRAPHS; HEREDITARY; RECONSTRUCTION; HYPOMORPHY; N-1;
D O I
10.3906/mat-1302-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kelly's combinatorial lemma is a basic tool in the study of Ulam's reconstruction conjecture. A generalization in terms of a family of t-elements subsets of a v-element set was given by Pouzet. We consider a version of this generalization modulo a prime p. We give illustrations to graphs and tournaments.
引用
收藏
页码:949 / 964
页数:16
相关论文
共 38 条
  • [1] On Kelly's lemma for infinite sets of integers
    Rautenbach, D
    DISCRETE MATHEMATICS, 2002, 245 (1-3) : 279 - 282
  • [2] A generalization of Gale's lemma
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    JOURNAL OF GRAPH THEORY, 2018, 88 (02) : 337 - 346
  • [3] A generalization of Fiedler's lemma and some applications
    Cardoso, Domingos M.
    Gutman, Ivan
    Martins, Enide Andrade
    Robbiano, Maria
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08): : 929 - 942
  • [4] A generalization of Fiedler's lemma and its applications
    Wu, Yangyang
    Ma, Xiaoling
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 604 - 620
  • [5] Criticality in Sperner's Lemma
    Kaiser, Tomas
    Stehlik, Matej
    Skrekovski, Riste
    COMBINATORICA, 2024, 44 (05) : 1041 - 1051
  • [6] On Whitehead's cut vertex lemma
    Lyman, Rylee Alanza
    JOURNAL OF GROUP THEORY, 2023, 26 (04) : 665 - 675
  • [7] Hamilton decompositions of regular expanders: A proof of Kelly's conjecture for large tournaments
    Kuehn, Daniela
    Osthus, Deryk
    ADVANCES IN MATHEMATICS, 2013, 237 : 62 - 146
  • [8] Wiener's lemma: localization and various approaches
    Shin, Chang Eon
    Sun Qi-yu
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) : 465 - 484
  • [9] Wiener's Lemma for Infinite Matrices II
    Sun, Qiyu
    CONSTRUCTIVE APPROXIMATION, 2011, 34 (02) : 209 - 235
  • [10] A generalization of Boesch's theorem
    Hu, Maolin
    Cheng, Yongxi
    Xu, Weidong
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1171 - 1177