Seven-modular lattices and a septic base Jacobi identity

被引:8
作者
Chan, HH [1 ]
Chua, KS
Solé, P
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Inst High Performance Comp, Singapore 117528, Singapore
[3] ESSI, CNRS 13S, F-06903 Sophia Antipolis, France
关键词
D O I
10.1016/S0022-314X(02)00069-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quadratic Jacobi identity to the septic base is introduced and proved by means of modular lattices and codes over rings. As an application the theta series of all the 6-dimensional 7-modular lattices with an Hermitian structure over Q(root-7) are derived. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:361 / 372
页数:12
相关论文
共 18 条
[1]   Applications of coding theory to the construction of modular lattices [J].
Bachoc, C .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (01) :92-119
[2]   RAMANUJANS THEORIES OF ELLIPTIC FUNCTIONS TO ALTERNATIVE BASES [J].
BERNDT, BC ;
BHARGAVA, S ;
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (11) :4163-4244
[3]  
BERNDT BC, 2001, COMMUNICATION SEP
[4]   A CUBIC COUNTERPART OF JACOBIS IDENTITY AND THE AGM [J].
BORWEIN, JM ;
BORWEIN, PB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :691-701
[5]   On Eisenstein series and Σm,n=-∞∞ qm(2)+mn+2n(2) [J].
Chan, HH ;
Ong, YL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) :1735-1744
[6]   The root lattice A*n and Ramanujan's circular summation of theta functions [J].
Chua, KS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) :1-8
[7]  
COHEN AM, 1976, ANN SCI ECOLE NORM S, V9, P379
[8]  
Conway J. H., 1999, GRUNDLEHREN MATH WIS, V290
[9]  
ELKIES ND, 1999, EIGHTFOLD WAY, V35
[10]  
Frenkel I., 1988, Pure and Applied Mathematics