INVESTIGATING THE EFFECTS OF METEOROLOGICAL DATA RAINFALL AND TEMPERATURE ON GNSS-R SOIL MOISTURE INVERSION

被引:1
|
作者
Shi, Yajie [1 ]
Liang, Yueji [1 ,2 ]
Ren, Chao [1 ,2 ]
Lai, Jianmin [1 ]
Ding, Qin [1 ]
Hu, Xinmiao [1 ]
机构
[1] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541004, Peoples R China
[2] Guangxi Key Lab Spatial Informat & Surveying & Ma, Guilin 541004, Peoples R China
来源
2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021) | 2021年
基金
中国国家自然科学基金;
关键词
GNSS-R; soil moisture; GA-BP; meteorological data; CYGNSS;
D O I
10.1109/GNSSR53802.2021.9617574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Soil moisture is one of the critical variables in maintaining the global water cycle balance. Moreover, it plays an essential role in climate change, crop growth, and environmental disaster event monitoring, and continuous monitoring of soil moisture is of great significance. The inversion of soil moisture detection technique using Global Navigation Satellite System Satellite-based Reflectance Signal (GNSS-R) to obtain high accuracy soil moisture is a hot topic of current research. To address the recent study, it only considers a limited number of variables related to the Cyclone Global Navigation Satellite System (CYGNSS). Still, it does not consider the effect of real-time variables rainfall and temperature on CYGNSS. To this end, this paper uses the GA-BP neural network model to obtain soil moisture by combining soil moisture data from ground stations with CYGNSS data-related variables, surface environmental data, rainfall, and air temperature. Analysis of the effect of meteorological data rainfall and temperature on the inversion of soil moisture. The experimental results show that the GA-BP neural network model with rainfall and temperature can better describe the correlation between multi-source variables and soil moisture with R of 0.9821 and RMSE of 0.0206 cm(3)/cm(3) Rainfall and temperature have contributed benefits to GNSS-R soil moisture inversion.
引用
收藏
页码:97 / 100
页数:4
相关论文
共 50 条
  • [31] Initial results of China's GNSS-R airborne campaign: soil moisture retrievals
    Wan, Wei
    Bai, Weihua
    Zhao, Limin
    Long, Di
    Sun, Yueqiang
    Meng, Xiangguang
    Chen, Hua
    Cui, Xiai
    Hong, Yang
    SCIENCE BULLETIN, 2015, 60 (10) : 964 - 971
  • [32] Enhancing GNSS-R Soil Moisture Accuracy with Vegetation and Roughness Correction
    Dong, Zhounan
    Jin, Shuanggen
    Chen, Guodong
    Wang, Peng
    ATMOSPHERE, 2023, 14 (03)
  • [33] Single-Pass Soil Moisture Retrievals Using GNSS-R: Lessons Learned
    Camps, Adriano
    Park, Hyuk
    Castellvi, Jordi
    Corbera, Jordi
    Ascaso, Emili
    REMOTE SENSING, 2020, 12 (12)
  • [34] An improved inversion method of forest biomass based on satellite GNSS-R
    Zhou, Xun
    Zheng, Nanshan
    Ding, Rui
    Zhang, Hengyi
    He, Jiaxing
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (08): : 2619 - 2626
  • [35] AN AIRBORNE GNSS-R FIELD EXPERIMENT OVER A VINEYARD FOR SOIL MOISTURE ESTIMATION AND MONITORING
    Alonso-Arroyo, A.
    Camps, A.
    Sanchez, N.
    Pablos, M.
    Gonzalez-Zamora, A.
    Martinez-Fernandez, J.
    Vall-llosera, M.
    Pascual, D.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4761 - 4764
  • [36] An improved soil moisture retrieval method considering azimuth angle changes for spaceborne GNSS-R
    Ye, Yiling
    Liu, Lilong
    Chen, Fade
    Huang, Liangke
    ADVANCES IN SPACE RESEARCH, 2025, 75 (01) : 178 - 189
  • [37] In-Situ GNSS-R and Radiometer Fusion Soil Moisture Retrieval Model Based on LSTM
    Zhang, Tianlong
    Yang, Lei
    Nan, Hongtao
    Yin, Cong
    Sun, Bo
    Yang, Dongkai
    Hong, Xuebao
    Lopez-Baeza, Ernesto
    REMOTE SENSING, 2023, 15 (10)
  • [38] The study of soil moisture retrieval from GNSS-R signals based on AIEM model and experiment data
    Mao, Kebiao
    Wang, Jianming
    Zhang, Mengyang
    Tang, Huajun
    Zhou, Qingbo
    Gaojishu Tongxin/Chinese High Technology Letters, 2009, 19 (03): : 295 - 301
  • [39] Exploration of Tianmu-1 and CYGNSS to estimate soil moisture with GNSS-R in southwest China
    Wang, Ruifu
    Li, Chengshu
    Zheng, Naiquan
    PHYSICA SCRIPTA, 2025, 100 (05)
  • [40] GRASS: AN EXPERIMENT ON THE CAPABILITY OF AIRBORNE GNSS-R SENSORS IN SENSING SOIL MOISTURE AND VEGETATION BIOMASS
    Paloscia, S.
    Santi, E.
    Fontanelli, G.
    Pettinato, S.
    Egido, A.
    Caparrini, M.
    Motte, E.
    Guerriero, L.
    Pierdicca, V.
    Floury, N.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2110 - 2113