INVESTIGATING THE EFFECTS OF METEOROLOGICAL DATA RAINFALL AND TEMPERATURE ON GNSS-R SOIL MOISTURE INVERSION

被引:1
|
作者
Shi, Yajie [1 ]
Liang, Yueji [1 ,2 ]
Ren, Chao [1 ,2 ]
Lai, Jianmin [1 ]
Ding, Qin [1 ]
Hu, Xinmiao [1 ]
机构
[1] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541004, Peoples R China
[2] Guangxi Key Lab Spatial Informat & Surveying & Ma, Guilin 541004, Peoples R China
来源
2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021) | 2021年
基金
中国国家自然科学基金;
关键词
GNSS-R; soil moisture; GA-BP; meteorological data; CYGNSS;
D O I
10.1109/GNSSR53802.2021.9617574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Soil moisture is one of the critical variables in maintaining the global water cycle balance. Moreover, it plays an essential role in climate change, crop growth, and environmental disaster event monitoring, and continuous monitoring of soil moisture is of great significance. The inversion of soil moisture detection technique using Global Navigation Satellite System Satellite-based Reflectance Signal (GNSS-R) to obtain high accuracy soil moisture is a hot topic of current research. To address the recent study, it only considers a limited number of variables related to the Cyclone Global Navigation Satellite System (CYGNSS). Still, it does not consider the effect of real-time variables rainfall and temperature on CYGNSS. To this end, this paper uses the GA-BP neural network model to obtain soil moisture by combining soil moisture data from ground stations with CYGNSS data-related variables, surface environmental data, rainfall, and air temperature. Analysis of the effect of meteorological data rainfall and temperature on the inversion of soil moisture. The experimental results show that the GA-BP neural network model with rainfall and temperature can better describe the correlation between multi-source variables and soil moisture with R of 0.9821 and RMSE of 0.0206 cm(3)/cm(3) Rainfall and temperature have contributed benefits to GNSS-R soil moisture inversion.
引用
收藏
页码:97 / 100
页数:4
相关论文
共 50 条
  • [21] A method for retrieving soil moisture from GNSS-R by using experiment data
    毛克彪
    Ma Ying
    Shen Xinyi
    Xia Lang
    Tian Shiying
    Han Jiaqi
    Liu Qing
    High Technology Letters, 2015, 21 (02) : 219 - 223
  • [22] SOIL MOISTURE AND VEGETATION HEIGHT RETRIEVAL USING GNSS-R TECHNIQUES
    Rodriguez-Alvarez, N.
    Monerris, A.
    Bosch-Lluis, X.
    Camps, A.
    Vall-Llossera, M.
    Marchan-Hernandez, J. F.
    Ramos-Perez, I.
    Valencia, E.
    Martinez-Fernandez, J.
    Sanchez-Martin, N.
    Baroncini-Turricchia, G.
    Perez-Gutierrez, C.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2171 - +
  • [23] INCIDENCE ANGLE NORMALIZATION OF SPACEBORNE GNSS-R SURFACE REFLECTIVITY FOR SOIL MOISTURE RETRIEVAL
    Setti, Paulo T., Jr.
    Tabibi, Sajad
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 510 - 513
  • [24] Sensing soil moisture and vegetation using GNSS-R polarimetric measurement
    Jia, Yan
    Savi, Patrizia
    ADVANCES IN SPACE RESEARCH, 2017, 59 (03) : 858 - 869
  • [25] Effective Surface Roughness Impact in Polarimetric GNSS-R Soil Moisture Retrievals
    Munoz-Martin, Joan Francesc
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Oudrhiri, Kamal
    REMOTE SENSING, 2023, 15 (08)
  • [26] SOIL MOISTURE AND VEGETATION IMPACT IN GNSS-R TECHDEMOSAT-1 OBSERVATIONS
    Camps, A.
    Park, H.
    Pablos, M.
    Foti, G.
    Gommenginger, C.
    Liu, Pang-Wei
    Judge, J.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1982 - 1984
  • [27] Spaceborne GNSS-R Soil Moisture Retrieval: Status, Development Opportunities, and Challenges
    Wu, Xuerui
    Ma, Wenxiao
    Xia, Junming
    Bai, Weihua
    Jin, Shuanggen
    Calabia, Andres
    REMOTE SENSING, 2021, 13 (01) : 1 - 24
  • [28] STUDY OF MAIZE PLANTS EFFECTS IN THE RETRIEVAL OF SOIL MOISTURE USING THE INTERFERENCE PATTERN GNSS-R TECHNIQUE
    Rodriguez-Alvarez, N.
    Bosch-Lluis, X.
    Acevo, R.
    Aguasca, A.
    Camps, A.
    Vall-llossera, M.
    Ramos-Perez, I.
    Valencia, E.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3813 - 3816
  • [29] GNSS-R sensor sensitivity to soil moisture and vegetation biomass and comparison with SAR data performance
    Paloscia, S.
    Santi, E.
    Fontanelli, G.
    Pettinato, S.
    Egido, A.
    Caparrini, M.
    Motte, E.
    Guerriero, L.
    Pierdicca, N.
    Floury, N.
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XIII, 2013, 8891
  • [30] GNSS-R TIME-SERIES SOIL MOISTURE RETRIEVALS FROM VEGETATED SURFACES
    Al-Khaldi, M.
    Johnson, J. T.
    O'Brien, A.
    Mattia, F.
    Balenzano, A.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2035 - 2038