INVESTIGATING THE EFFECTS OF METEOROLOGICAL DATA RAINFALL AND TEMPERATURE ON GNSS-R SOIL MOISTURE INVERSION

被引:1
|
作者
Shi, Yajie [1 ]
Liang, Yueji [1 ,2 ]
Ren, Chao [1 ,2 ]
Lai, Jianmin [1 ]
Ding, Qin [1 ]
Hu, Xinmiao [1 ]
机构
[1] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541004, Peoples R China
[2] Guangxi Key Lab Spatial Informat & Surveying & Ma, Guilin 541004, Peoples R China
来源
2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021) | 2021年
基金
中国国家自然科学基金;
关键词
GNSS-R; soil moisture; GA-BP; meteorological data; CYGNSS;
D O I
10.1109/GNSSR53802.2021.9617574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Soil moisture is one of the critical variables in maintaining the global water cycle balance. Moreover, it plays an essential role in climate change, crop growth, and environmental disaster event monitoring, and continuous monitoring of soil moisture is of great significance. The inversion of soil moisture detection technique using Global Navigation Satellite System Satellite-based Reflectance Signal (GNSS-R) to obtain high accuracy soil moisture is a hot topic of current research. To address the recent study, it only considers a limited number of variables related to the Cyclone Global Navigation Satellite System (CYGNSS). Still, it does not consider the effect of real-time variables rainfall and temperature on CYGNSS. To this end, this paper uses the GA-BP neural network model to obtain soil moisture by combining soil moisture data from ground stations with CYGNSS data-related variables, surface environmental data, rainfall, and air temperature. Analysis of the effect of meteorological data rainfall and temperature on the inversion of soil moisture. The experimental results show that the GA-BP neural network model with rainfall and temperature can better describe the correlation between multi-source variables and soil moisture with R of 0.9821 and RMSE of 0.0206 cm(3)/cm(3) Rainfall and temperature have contributed benefits to GNSS-R soil moisture inversion.
引用
收藏
页码:97 / 100
页数:4
相关论文
共 50 条
  • [1] Review of GNSS-R Technology for Soil Moisture Inversion
    Yang, Changzhi
    Mao, Kebiao
    Guo, Zhonghua
    Shi, Jiancheng
    Bateni, Sayed M.
    Yuan, Zijin
    REMOTE SENSING, 2024, 16 (07)
  • [2] SOIL MOISTURE RETRIEVAL USING GNSS-R DATA
    Zribi, Mehrez
    Huc, Mireille
    Pellarin, Thierry
    Baghdadi, Nicolas
    Pierdicca, Nazzareno
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 172 - 175
  • [3] SENSITIVITY TO SOIL MOISTURE OF SPACEBORNE GNSS-R OBSERVABLES
    Camps, Adriano
    Vall-Llossera, Mercedes
    Park, Hyuk
    Portal, Gerard
    Rossato, Luciana
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3161 - 3164
  • [4] Soil Moisture Estimation Based on GNSS-R Signal
    Yu, Pengwei
    Zhang, Lei
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTING TECHNOLOGY, 2016, 64 : 130 - 135
  • [5] Ground based GNSS-R observations for soil moisture
    Yan Song-Hua
    Gong Jian-Ya
    Zhang Xun-Xie
    Li Dong-Xiu
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (11): : 2735 - 2744
  • [6] A Refined Land Type Digitization Method of GNSS-R Soil Moisture Inversion
    Guo F.
    Dong G.
    Zhu Y.
    Zhang X.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (01): : 47 - 55
  • [7] AIRBORNE GNSS-R, THERMAL AND OPTICAL DATA RELATIONSHIPS FOR SOIL MOISTURE RETRIEVALS
    Sanchez, N.
    Alonso-Arroyo, A.
    Gonzalez-Zamora, A.
    Martinez-Fernandez, J.
    Camps, A.
    Vall-llosera, M.
    Pablos, M.
    Herrero-Jimenez, C. M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4785 - 4788
  • [8] A Deep-Learning Approach to Soil Moisture Estimation with GNSS-R
    Roberts, Thomas Maximillian
    Colwell, Ian
    Chew, Clara
    Lowe, Stephen
    Shah, Rashmi
    REMOTE SENSING, 2022, 14 (14)
  • [9] Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological Data
    Zhen, Yinqing
    Yan, Qingyun
    REMOTE SENSING, 2023, 15 (12)
  • [10] ANALYSIS OF GLORI AIRBONE GNSS-R DATA FOR SOIL MOISTURE ESTIMATION
    Zribi, Mehrez
    Dassas, Karin
    Dehaye, Vincent
    Fanise, Pascal
    Le Page, Michel
    Boone, Aaron
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 514 - 517