A Diophantine equation with the harmonic mean

被引:1
|
作者
Zhang, Yong [1 ,2 ]
Chen, Deyi [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine equation; Pell's equation; Integer solutions; Rational parametric solutions; F(X)F(Y);
D O I
10.1007/s10998-019-00302-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f is an element of Q[x] be a polynomial without multiple roots and degf >= 2. We give conditions for f=x2+bx+cunder which the Diophantine equation 2f(x)f(y)=f(z)(f(x)+f(y))\ has infinitely many nontrivial integer solutions and prove that this equation has infinitely many rational parametric solutions for f=x2+bx with nonzero integer b. Moreover, we show that it has a rational parametric solution for infinitely many cubic polynomials.
引用
收藏
页码:138 / 144
页数:7
相关论文
共 50 条
  • [1] A Diophantine equation with the harmonic mean
    Yong Zhang
    Deyi Chen
    Periodica Mathematica Hungarica, 2020, 80 : 138 - 144
  • [2] A mean value theorem for the Diophantine equation axy−x−y=n
    Jingjing Huang
    Acta Mathematica Hungarica, 2012, 134 : 68 - 78
  • [3] On the Diophantine Equation
    Zahari, N. M.
    Sapar, S. H.
    Atan, Mohd K. A.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 959 - 966
  • [4] On a diophantine equation
    Leont'ev, V. K.
    MATHEMATICAL NOTES, 2016, 100 (3-4) : 403 - 412
  • [5] On a diophantine equation
    V. K. Leont’ev
    Mathematical Notes, 2016, 100 : 403 - 412
  • [6] A mean value theorem for the Diophantine equation axy-x-y=n
    Huang, J.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (1-2) : 68 - 78
  • [7] ON A CLASS OF SOLUTIONS FOR A QUADRATIC DIOPHANTINE EQUATION
    Somanath, Manju
    Raja, K.
    Kannan, J.
    Mahalakshmi, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (11): : 1097 - 1103
  • [8] On the Diophantine equation nx
    Viriyapong, Nongluk
    Viriyapong, Chokchai
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (04): : 1639 - 1642
  • [9] AN INTERESTING DIOPHANTINE EQUATION
    Toma, Marina
    JOURNAL OF SCIENCE AND ARTS, 2011, (04): : 459 - 461
  • [10] On the Diophantine equation ax
    Viriyapong, Chokchai
    Viriyapong, Nongluk
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (03): : 525 - 527