A Diophantine equation with the harmonic mean

被引:1
作者
Zhang, Yong [1 ,2 ]
Chen, Deyi [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine equation; Pell's equation; Integer solutions; Rational parametric solutions; F(X)F(Y);
D O I
10.1007/s10998-019-00302-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f is an element of Q[x] be a polynomial without multiple roots and degf >= 2. We give conditions for f=x2+bx+cunder which the Diophantine equation 2f(x)f(y)=f(z)(f(x)+f(y))\ has infinitely many nontrivial integer solutions and prove that this equation has infinitely many rational parametric solutions for f=x2+bx with nonzero integer b. Moreover, we show that it has a rational parametric solution for infinitely many cubic polynomials.
引用
收藏
页码:138 / 144
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 1969, Diophantine Equations
[2]   The Diophantine equation (xk-1)(yk-1) = (zk-1)t [J].
Bennett, Michael A. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (04) :507-525
[3]  
Cohen Henri., 2007, Number Theory, VI
[4]  
Connell I., 1998, ELLIPTIC CURVE HDB
[5]  
EGGAN LC, 1982, FIBONACCI QUART, V20, P24
[6]  
Guy R.K., 2004, UNSOLVED PROBLEMS NU, V3rd ed., P336
[7]  
Katayama S., 2006, J MATH U TOKUSHIMA, V40, P9
[8]  
Schinzel A., 1963, ELEM MATH, V18, P132
[9]  
Silverman JH, 2009, GRAD TEXTS MATH, V106, pXVII
[10]  
Silverman Joseph H., 1992, Rational Points on Elliptic Curves