Non-classical orthogonality relations for big and little q-Jacobi polynomials

被引:6
|
作者
Moreno, Samuel G. [1 ]
Garcia-Caballero, Esther M. [1 ]
机构
[1] Univ Jaen, Dept Matemat, Jaen 23071, Spain
关键词
Big q-Jacobi polynomials; Little q-Jacobi polynomials; Non-standard orthogonality; MEIXNER-POLLACZEK POLYNOMIALS; SOBOLEV ORTHOGONALITY;
D O I
10.1016/j.jat.2009.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Big q-Jacobi polynomials {P(n)(.; a, b, c; q)}(n=0)(infinity) are classically defined for 0 < a < q(-1), 0 < b < q(-1) and c < 0. For the family of little q-Jacobi polynomials {p(n)(.; a, b vertical bar q)}(n=0)(infinity), classical considerations restrict the parameters imposing 0 < a < q(-1) and b < q(-1). In this work we extend both families in Such a way that wider sets of parameters are allowed, and we establish orthogonality conditions for those cases for which Favard's theorem does not work. As a by-product, we obtain similar results for the families of big and little q-Laguerre polynomials. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:303 / 322
页数:20
相关论文
共 50 条