Non-classical orthogonality relations for big and little q-Jacobi polynomials

被引:6
|
作者
Moreno, Samuel G. [1 ]
Garcia-Caballero, Esther M. [1 ]
机构
[1] Univ Jaen, Dept Matemat, Jaen 23071, Spain
关键词
Big q-Jacobi polynomials; Little q-Jacobi polynomials; Non-standard orthogonality; MEIXNER-POLLACZEK POLYNOMIALS; SOBOLEV ORTHOGONALITY;
D O I
10.1016/j.jat.2009.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Big q-Jacobi polynomials {P(n)(.; a, b, c; q)}(n=0)(infinity) are classically defined for 0 < a < q(-1), 0 < b < q(-1) and c < 0. For the family of little q-Jacobi polynomials {p(n)(.; a, b vertical bar q)}(n=0)(infinity), classical considerations restrict the parameters imposing 0 < a < q(-1) and b < q(-1). In this work we extend both families in Such a way that wider sets of parameters are allowed, and we establish orthogonality conditions for those cases for which Favard's theorem does not work. As a by-product, we obtain similar results for the families of big and little q-Laguerre polynomials. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:303 / 322
页数:20
相关论文
共 50 条
  • [1] NON-CLASSICAL ORTHOGONALITY RELATIONS FOR CONTINUOUS q-JACOBI POLYNOMIALS
    Moreno, Samuel G.
    Garcia-Caballero, Esther M.
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (04): : 1677 - 1690
  • [2] Multivariable big and little q-Jacobi polynomials
    Stokman, JV
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (02) : 452 - 480
  • [3] On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials
    Atakishiyev, NM
    Klimyk, AU
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) : 246 - 257
  • [4] Structure relations for the bivariate big q-Jacobi polynomials
    Lewanowicz, Stanislaw
    Wozny, Pawel
    Nowak, Rafal
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8790 - 8802
  • [5] Little and big q-Jacobi polynomials and the Askey–Wilson algebra
    Pascal Baseilhac
    Xavier Martin
    Luc Vinet
    Alexei Zhedanov
    The Ramanujan Journal, 2020, 51 : 629 - 648
  • [6] Multiple little q-Jacobi polynomials
    Postelmans, K
    Van Assche, W
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 361 - 375
  • [7] Multiple big q-Jacobi polynomials
    Bouzeffour, Fethi
    Garayev, Mubariz
    BULLETIN OF MATHEMATICAL SCIENCES, 2020, 10 (02)
  • [8] Little and big q-Jacobi polynomials and the Askey-Wilson algebra
    Baseilhac, Pascal
    Martin, Xavier
    Vinet, Luc
    Zhedanov, Alexei
    RAMANUJAN JOURNAL, 2020, 51 (03): : 629 - 648
  • [9] A LIMIT q =-1 FOR THE BIG q-JACOBI POLYNOMIALS
    Vinet, Luc
    Zhedanov, Alexei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (10) : 5491 - 5507
  • [10] Orthogonality and asymptotics of Pseudo-Jacobi polynomials for non-classical parameters
    Jordaan, K.
    Tookos, F.
    JOURNAL OF APPROXIMATION THEORY, 2014, 178 : 1 - 12