CT image segmentation using information theoretic criteria

被引:0
|
作者
Hibbard, L [1 ]
机构
[1] Comp Med Syst Inc, Phys & Res, St Louis, MO USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:S96 / S96
页数:1
相关论文
共 50 条
  • [1] Image segmentation using information theoretic criteria
    Hibbard, LS
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1639 - 1649
  • [2] ON IMAGE SEGMENTATION USING INFORMATION THEORETIC CRITERIA
    Aue, Alexander
    Lee, Thomas C. M.
    ANNALS OF STATISTICS, 2011, 39 (06): : 2912 - 2935
  • [3] An information theoretic approach to image segmentation
    Baranwal, R
    Singh, R
    Bora, PK
    IEEE TENCON 2003: CONFERENCE ON CONVERGENT TECHNOLOGIES FOR THE ASIA-PACIFIC REGION, VOLS 1-4, 2003, : 218 - 222
  • [4] An information theoretic framework for image segmentation
    Rigau, J
    Feixas, M
    Sbert, M
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1193 - 1196
  • [5] CT image segmentation using information divergence measures
    Hibbard, L
    MEDICAL PHYSICS, 2003, 30 (06) : 1457 - 1458
  • [6] An information theoretic approach to automated medical image segmentation
    Corona, Enrique
    Hill, Jason E.
    Nutter, Brian
    Mitra, Sunanda
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [7] Adaptive spatial information-theoretic clustering for image segmentation
    Wang, Zhi Min
    Soh, Yeng Chai
    Song, Qing
    Sim, Kang
    PATTERN RECOGNITION, 2009, 42 (09) : 2029 - 2044
  • [8] Selection of classifiers using information-theoretic criteria
    Kang, HJ
    PATTERN RECOGNITION AND DATA MINING, PT 1, PROCEEDINGS, 2005, 3686 : 478 - 487
  • [9] Information-Theoretic Image Reconstruction and Segmentation from Noisy Projections
    Visser, Gerhard
    Dowe, David L.
    Svalbe, Imants D.
    AI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5866 : 170 - 179
  • [10] Information theoretic deformable registration using local image information
    Karacali, Bilge
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 72 (03) : 219 - 237