Hydrogen Embrittlement of CoCrFeMnNi High-Entropy Alloy Compared with 304 and IN718 Alloys

被引:16
作者
Feng, Zheng [1 ]
Li, Xinfeng [2 ]
Song, Xiaolong [1 ]
Gu, Tang [3 ]
Zhang, Yong [4 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
[3] Harbin Engn Univ, Coll Mech & Elect Engn, Harbin 150001, Peoples R China
[4] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
关键词
CoCrFeMnNi; hydrogen embrittlement; high-entropy alloy; twin; MECHANICAL-PROPERTIES; INCONEL; 718; ASSISTED CRACK; HIGH-STRENGTH; RESISTANCE; BEHAVIOR; MULTISCALE; STRAIN; PHASE; MICROSTRUCTURE;
D O I
10.3390/met12060998
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The hydrogen embrittlement (HE) behaviors of a CoCrFeMnNi high-entropy alloy (HEA), 304 stainless steel (304SS) and IN718 alloys were studied and compared via electrochemical hydrogen pre-charging, slow strain rate tensile tests, and fracture surface analysis. The results demonstrate that the HEA exhibited the greatest HE-resistance, followed by 304SS and then IN718 alloy, when the alloys were charged at 1.79 mA cm(-2) for 24 h and 48 h, and 179 mA cm(-2) for 2 h. Hydrogen-induced reduction in ductility was observed for 304SS and IN718 alloys, whereas the hydrogen-affected fracture strain of the HEA was dependent on the hydrogen charging time. The resistance to HE was improved at a short hydrogen charging time (24 h), but reduced at a long charging time (48 h). This is attributed to the competing mechanisms between hydrogen-enhanced twin formation and HEDE (hydrogen-enhanced decohesion).
引用
收藏
页数:18
相关论文
共 67 条
[1]   The effect of nitrogen alloying on hydrogen-assisted plastic deformation and fracture in FeMnNiCoCr high-entropy alloys [J].
Astafurova, E. G. ;
Panchenko, M. Yu ;
Reunova, K. A. ;
Mikhno, A. S. ;
Moskvina, V. A. ;
Melnikov, E., V ;
Astafurov, S., V ;
Maier, H. J. .
SCRIPTA MATERIALIA, 2021, 194
[2]   Hydrogen-enhanced compatibility constraint for intergranular failure in FCC FeNiCoCrMn high-entropy alloy [J].
Bertsch, K. M. ;
Nygren, K. E. ;
Wang, S. ;
Bei, H. ;
Nagao, A. .
CORROSION SCIENCE, 2021, 184
[3]   High hardness dual-phase high entropy alloy thin films produced by interface alloying [J].
Cai, Y. P. ;
Wang, G. J. ;
Ma, Y. J. ;
Cao, Z. H. ;
Meng, X. K. .
SCRIPTA MATERIALIA, 2019, 162 :281-285
[4]  
Eremin E., 2020, EURASIAN PHYS TECH J, V17, P33, DOI [10.31489/2020No1/13-18, DOI 10.31489/2020NO1/13-18]
[5]   LOW-CYCLE FATIGUE BEHAVIOR OF INCONEL 718 AT 298 K AND 823 K [J].
FOURNIER, D ;
PINEAU, A .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1977, 8 (07) :1095-1105
[6]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[7]   Microbands and microtwins associated with impact craters in copper and brass targets: the role of stacking fault energy [J].
Gonzalez, B ;
Murr, LE ;
Valerio, OL ;
Esquivel, EV ;
Lopez, H .
MATERIALS CHARACTERIZATION, 2002, 49 (04) :359-366
[8]   Multiscale modeling of the anisotropic electrical conductivity of architectured and nanostructured Cu-Nb composite wires and experimental comparison [J].
Gu, T. ;
Medy, J. -R. ;
Volpi, F. ;
Castelnau, O. ;
Forest, S. ;
Herve-Luanco, E. ;
Lecouturier, F. ;
Proudhon, H. ;
Renault, P. -O. ;
Thilly, L. .
ACTA MATERIALIA, 2017, 141 :131-141
[9]   Multiscale modeling of the elastic behavior of architectured and nanostructured Cu-Nb composite wires [J].
Gu, T. ;
Castelnau, O. ;
Forest, S. ;
Herve-Luanco, E. ;
Lecouturier, F. ;
Proudhon, H. ;
Thilly, L. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2017, 121 :148-162
[10]   Prediction of maximum fatigue indicator parameters for duplex Ti-6Al-4V using extreme value theory [J].
Gu, Tang ;
Stopka, Krzysztof S. ;
Xu, Chuan ;
McDowell, David L. .
ACTA MATERIALIA, 2020, 188 :504-516