Global italian domination in graphs

被引:17
作者
Hao, Guoliang [1 ]
Hu, Kangxiu [1 ]
Wei, Shouliu [2 ]
Xu, Zhijun [1 ]
机构
[1] East China Univ Technol, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Minjiang Univ, Coll Math & Data Sci, Fuzhou 350121, Fujian, Peoples R China
关键词
Italian dominating function; Italian domination number; global Italian dominating function; global Italian domination number;
D O I
10.2989/16073606.2018.1506831
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An Italian dominating function (IDF) on a graph G = (V, E) is a function f: V ? {0, 1, 2} satisfying the condition that for every vertex v ? V (G) with f (v) = 0, either v is adjacent to a vertex assigned 2 under f, or v is adjacent to at least two vertices assigned 1. The weight of an IDF f is the value ?(v?V)((G)) f (v). The Italian domination number of a graph G, denoted by ?(I) (G), is the minimum weight of an IDF on G. An IDF f on G is called a global Italian dominating function (GIDF) on G if f is also an IDF on the complement G? of G. The global Italian domination number of G, denoted by ?(gI) (G), is the minimum weight of a GIDF on G. In this paper, we initiate the study of the global Italian domination number and we present some strict bounds for the global Italian domination number. In particular, we prove that for any tree T of order n ? 4, ?(gI) (T) ? ?(I) (T) + 2 and we characterize all trees with ?(gI) (T) = ?(I) (T) + 2 and ?(gI) (T) = ?(I) (T) + 1.
引用
收藏
页码:1101 / 1115
页数:15
相关论文
共 12 条
  • [1] GLOBAL RAINBOW DOMINATION IN GRAPHS
    Amjadi, J.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 749 - 759
  • [2] Arumugam K., 2010, Discuss.Math. Graph Theory30, P33
  • [3] Atapour M, 2014, TRANS COMB, V3, P35
  • [4] Global Roman Domination in Trees
    Atapour, M.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. GRAPHS AND COMBINATORICS, 2015, 31 (04) : 813 - 825
  • [5] FACTOR DOMINATION IN GRAPHS
    BRIGHAM, RC
    DUTTON, RD
    [J]. DISCRETE MATHEMATICS, 1990, 86 (1-3) : 127 - 136
  • [6] Roman {2}-domination
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    McRae, Alice A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 204 : 22 - 28
  • [7] Delic D, 2014, ARS COMBINATORIA, V114, P105
  • [8] Bounds on the Global Domination Number
    Desormeaux, Wyatt J.
    Gibson, Philip E.
    Haynes, Teresa W.
    [J]. QUAESTIONES MATHEMATICAE, 2015, 38 (04) : 563 - 572
  • [9] Italian domination in trees
    Henning, Michael A.
    Klostermeyer, William F.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 217 : 557 - 564
  • [10] Global Roman domination in graphs
    Pushpam, P. Roushini Leely
    Padmapriea, S.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 200 : 176 - 185