Finite dimensional models for extremes of Gaussian and non-Gaussian processes

被引:6
|
作者
Xu, Hui [1 ]
Grigoriu, Mircea D. [1 ,2 ]
机构
[1] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Civil & Environm Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Extremes; Weak convergence; Almost sure convergence; Finite dimensional model; Karhunen-Loeve (KL) representation; WIND PRESSURE; SIMULATION;
D O I
10.1016/j.probengmech.2022.103199
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Numerical solutions of stochastic problems involving random processes X(t), which constitutes infinite families of random variables, require to represent these processes by finite dimensional (FD) models X-d(t), i.e., deterministic functions of time depending on finite numbers d of random variables. Most available FD models match the mean, correlation, and other global properties of X(t). They provide useful information to a broad range of problems, but cannot be used to estimate extremes or other sample properties of X(t). We develop FD models X-d(t) for processes X(t) with continuous samples and establish conditions under which these models converge weakly to X(t) in the space of continuous functions as d -> infinity. These theoretical results are illustrated by numerical examples which show that, under the conditions established in this study, samples and extremes of X(t) can be approximated by samples and extremes of X-d(t) and that the discrepancy between samples and extremes of these processes decreases with d.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Non-Gaussian non-stationary models for natural hazard modeling
    Poirion, Fabrice
    Zentner, Irmela
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) : 5938 - 5950
  • [22] Discrete and continuous time extremes of Gaussian processes
    Piterbarg V.I.
    Extremes, 2004, 7 (2) : 161 - 177
  • [23] Extremes of Gaussian processes with a smooth random variance
    Huesler, Juerg
    Piterbarg, Vladimir
    Rumyantseva, Ekaterina
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2592 - 2605
  • [24] Extremes of threshold-dependent Gaussian processes
    Bai, Long
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Ji, Lanpeng
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (11) : 1971 - 2002
  • [25] Extremes of threshold-dependent Gaussian processes
    Long Bai
    Krzysztof Debicki
    Enkelejd Hashorva
    Lanpeng Ji
    Science China(Mathematics), 2018, 61 (11) : 1971 - 2002
  • [26] Extremes of threshold-dependent Gaussian processes
    Long Bai
    Krzysztof Dȩbicki
    Enkelejd Hashorva
    Lanpeng Ji
    Science China Mathematics, 2018, 61 : 1971 - 2002
  • [27] Extremes of space-time Gaussian processes
    Kabluchko, Zakhar
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (11) : 3962 - 3980
  • [28] Non-Gaussian time-dependent statistics of wind pressure processes on a roof structure
    Huang, M. F.
    Huang, Song
    Feng, He
    Lou, Wenjuan
    WIND AND STRUCTURES, 2016, 23 (04) : 275 - 300
  • [29] Translation method: a historical review and its application to simulation of non-Gaussian stationary processes
    Choi, H
    Kanda, J
    WIND AND STRUCTURES, 2003, 6 (05) : 357 - 386
  • [30] Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes
    Taufer, Emanuele
    Leonenko, Nikolai
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3050 - 3063