共 50 条
Epigenetics and autoimmunity
被引:217
|作者:
Brooks, Wesley H.
[1
]
Le Dantec, Christelle
[2
]
Pers, Jacques-Olivier
[2
,3
]
Youinou, Pierre
[2
,3
]
Renaudineau, Yves
[2
,3
]
机构:
[1] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Expt HTS, Tampa, FL 33612 USA
[2] Univ Europeenne Bretagne, Immunol & Pathol EA2216, IFR ScinBioS 148, Univ Brest, Brest, France
[3] CHU Brest, Hop Morvan, Immunol Lab, F-29285 Brest, France
关键词:
Autoimmune diseases;
Epigenetics;
DNA methylation;
Histone;
miRNA;
SYSTEMIC-LUPUS-ERYTHEMATOSUS;
X-CHROMOSOME INACTIVATION;
DRUG-INDUCED LUPUS;
HISTONE DEACETYLASE INHIBITOR;
DNA METHYLTRANSFERASES 3A;
BLOOD MONONUCLEAR-CELLS;
CD4(+) T-CELLS;
RHEUMATOID-ARTHRITIS;
GENE-EXPRESSION;
MODIFICATION PATTERNS;
D O I:
10.1016/j.jaut.2009.12.006
中图分类号:
R392 [医学免疫学];
Q939.91 [免疫学];
学科分类号:
100102 ;
摘要:
Advances in genetics, such as sequencing of the human genome, have contributed to identification of susceptible genetic patterns in autoimmune diseases (AID). However, genetics is only one aspect of the diseases that does not reflect the influence of environment, sex or aging. Epigenetics, the control of gene packaging and expression independent of alterations in the DNA sequence, is providing new directions linking genetics and environmental factors. Recent findings have contributed to our understanding of how epigenetic modifications could influence AID development, showing differences between AID patients and healthy controls but also showing how one disease differs from another. With regards to epigenetic abnormalities, DNA methylation and histone modifications could be affected leading to large spatial and temporal changes in gene regulation. Other epigenetic processes, such as the influence of the ionic milieu around chromatin and DNA supercoiling stresses may be suspected also. The newly described role of microRNAs in control of gene expression is important by promoting or suppressing autoreactivity in AID. As a consequence control of cellular processes is affected becoming conducive, for example, to the development of autoreactive lymphocytes in systemic lupus erythematosus, synoviocyte proliferation in rheumatoid arthritis, or neural demyelination in multiple sclerosis. Application of epigenetics to AID is in its infancy and requires new hypotheses, techniques, tools, and collaborations between basic epigenetic researchers and autoimmune researchers in order to improve our comprehension of AID. From this will arise new therapeutics, means for early intervention, and perhaps prevention. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:J207 / J219
页数:13
相关论文