An improved grasshopper optimization algorithm with application to financial stress prediction

被引:222
作者
Luo, Jie [1 ]
Chen, Huiling [1 ]
Zhang, Qian [1 ]
Xu, Yueting [1 ]
Huang, Hui [1 ]
Zhao, Xuehua [2 ]
机构
[1] Wenzhou Univ, Dept Comp Sci, Wenzhou 325035, Zhejiang, Peoples R China
[2] Shenzhen Inst Informat Technol, Sch Digital Media, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Kernel extreme learning machine; Grasshopper optimization algorithm; Parameter optimization; Opposition-based learning; Levy-flight; Gaussian mutation; EXTREME LEARNING-MACHINE; EVOLUTIONARY;
D O I
10.1016/j.apm.2018.07.044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study proposed an improved grasshopper optimization algorithm (GOA) for continuous optimization and applied it successfully to the financial stress prediction problem. GOA is a recently proposed metaheuristic algorithm inspired by the swarming behavior of grasshoppers. This algorithm is proved to be efficient in solving global unconstrained and constrained optimization problems. However, the original GOA has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these shortcomings, an improved GOA which combines three strategies to achieve a more suitable balance between exploitation and exploration was established. Firstly, Gaussian mutation is employed to increase population diversity, which can make GOA has stronger local search ability. Then, Levy-flight strategy was adopted to enhance the randomness of the search agent's movement, which can make GOA have a stronger global exploration capability. Furthermore, opposition-based learning was introduced into GOA for more efficient search solution space. Based on the improved GOA, an effective kernel extreme learning machine model was developed for financial stress prediction. As the experimental results show, the three strategies can significantly boost the performance of GOA and the proposed learning scheme can guarantee a more stable kernel extreme learning machine model with higher predictive performance compared to others. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:654 / 668
页数:15
相关论文
共 39 条
[1]  
[Anonymous], P INT C MACH LEARN C
[2]  
[Anonymous], 2016, MEMET COMPUT
[3]  
[Anonymous], BACTERIAL FORAGING T
[4]  
[Anonymous], 1995, 1995 IEEE INT C
[5]  
[Anonymous], NEUROCOMPUTING
[6]   Chaotic grasshopper optimization algorithm for global optimization [J].
Arora, Sankalap ;
Anand, Priyanka .
NEURAL COMPUTING & APPLICATIONS, 2019, 31 (08) :4385-4405
[7]   An Overview of Evolutionary Algorithms for Parameter Optimization [J].
Baeck, Thomas ;
Schwefel, Hans-Paul .
EVOLUTIONARY COMPUTATION, 1993, 1 (01) :1-23
[8]   A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India [J].
Barman, Mayur ;
Choudhury, N. B. Dev ;
Sutradhar, Suman .
ENERGY, 2018, 145 :710-720
[9]   A continuous genetic algorithm designed for the global optimization of multimodal functions [J].
Chelouah, R ;
Siarry, P .
JOURNAL OF HEURISTICS, 2000, 6 (02) :191-213
[10]   A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms [J].
Derrac, Joaquin ;
Garcia, Salvador ;
Molina, Daniel ;
Herrera, Francisco .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) :3-18