Well-posedness results for the 3D incompressible Hall-MHD equations

被引:9
|
作者
Ye, Zhuan [1 ]
机构
[1] Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hall-MHD equations; Low regularity; Well-posedness; Large-time behavior; DATA GLOBAL EXISTENCE; REGULARITY CRITERIA; TEMPORAL DECAY; TIME BEHAVIOR; SYSTEM; WAVES;
D O I
10.1016/j.jde.2022.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the well-posedness results of the three-dimensional incompressible Hallmagnetohydrodynamic equations with fractional dissipation. More precisely, we provide a direct proof of the local well-posedness of smooth solutions for the Hall-magnetohydrodynamic equations with the diffusive term for the magnetic field consisting of the fractional Laplacian with its power bigger than or equal to one half. Furthermore, the small data global well-posedness results are also derived. In addition, we obtain the optimal decay rate when the fractional powers are further restricted to a certain range. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 216
页数:87
相关论文
共 50 条
  • [31] EXISTENCE AND HOMOGENIZATION OF TRAJECTORY STATISTICAL SOLUTIONS FOR THE 3D INCOMPRESSIBLE HALL-MHD EQUATIONS
    Yang, Hujun
    Han, Xiaoling
    Zhao, Caidi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [32] Regularity criteria for 3D Hall-MHD equations
    Xuanji Jia
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [33] Regularity criteria for 3D Hall-MHD equations
    Jia, Xuanji
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [34] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1865 - 1884
  • [35] Well-Posedness for the Incompressible Hall-MHD System with Initial Magnetic Field Belonging to H3/2 (R3)
    Zhang, Shunhang
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (01)
  • [36] Global well-posedness for the 3D viscous nonhomogeneous incompressible magnetohydrodynamic equations
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    ANALYSIS AND APPLICATIONS, 2018, 16 (03) : 363 - 405
  • [37] On well-posedness and blow-up for the full compressible Hall-MHD system
    Fan, Jishan
    Ahmad, Bashir
    Hayat, Tasawar
    Zhou, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 569 - 579
  • [38] Global well-posedness and decay to 3D MHD equations with nonlinear damping
    Li, Hongmin
    Xiao, Yuelong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
  • [39] On the local well-posedness of strong solutions to 3D MHD equations with Hall and ion-slip effects
    Xiaopeng Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [40] On the local well-posedness of strong solutions to 3D MHD equations with Hall and ion-slip effects
    Zhao, Xiaopeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):