Enhanced Electrochemical Performance of Aprotic Li-CO2 Batteries with a Ruthenium-Complex-Based Mobile Catalyst

被引:76
作者
Zhang, Zhen [1 ,2 ]
Bai, Wen-Long [1 ]
Cai, Zhi-Peng [1 ]
Cheng, Jin-Huan [1 ]
Kuang, Hua-Yi [1 ,2 ]
Dong, Bo-Xu [1 ,2 ]
Wang, Yu-Bo [1 ,2 ]
Wang, Kai-Xue [1 ,2 ]
Chen, Jie-Sheng [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Zhiyuan Coll, Shanghai 200240, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
batteries; Li-CO2; mobile catalyst; oxalate; ruthenium complexes; LITHIUM-CO2; BATTERY; NANOPARTICLES; CO2;
D O I
10.1002/anie.202105892
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-CO2 batteries are regarded as next-generation high-energy-density electrochemical devices. However, the greatest challenge arises from the formation of the discharge product, Li2CO3, which would accumulate and deactivate heterogenous catalysts to cause huge polarization. Herein, Ru(bpy)(3)Cl-2 was employed as a solution-phase catalyst for Li-CO2 batteries and proved to be the most effective one screened so far. Spectroscopy and electrochemical analyses elucidate that the Ru-II center could interact with both CO2 and amorphous Li2C2O4 intermediate, thus promoting electroreduction process and delaying carbonate transformation. As a result, the charge potential is reduced to 3.86 V and over 60 discharge/charge cycles are achieved with a fixed capacity of 1000 mAh g(-1) at a current density of 300 mA g(-1). Our work provides a new avenue to improve the electrochemical performance of Li-CO2 batteries with efficient mobile catalysts.
引用
收藏
页码:16404 / 16408
页数:5
相关论文
共 31 条
  • [1] Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex
    Angamuthu, Raja
    Byers, Philip
    Lutz, Martin
    Spek, Anthony L.
    Bouwman, Elisabeth
    [J]. SCIENCE, 2010, 327 (5963) : 313 - 315
  • [2] [Anonymous], 2018, ANGEW CHEM, V130, P3936
  • [3] [Anonymous], 2011, ANGEW CHEM, V123, P8768
  • [4] Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.128, 10.1038/nenergy.2016.128]
  • [5] Bard, 2001, ELECTROCHEMICAL METH, P156
  • [6] Understanding the fundamentals of redox mediators in Li-O2 batteries: a case study on nitroxides
    Bergner, Benjamin J.
    Hofmann, Christine
    Schuermann, Adrian
    Schroeder, Daniel
    Peppler, Klaus
    Schreiner, Peter R.
    Janek, Juegen
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (47) : 31769 - 31779
  • [7] TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries
    Bergner, Benjamin J.
    Schuermann, Adrian
    Peppler, Klaus
    Garsuch, Arnd
    Janek, Juergen
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (42) : 15054 - 15064
  • [8] The Lithium-Oxygen Battery with Ether-Based Electrolytes
    Freunberger, Stefan A.
    Chen, Yuhui
    Drewett, Nicholas E.
    Hardwick, Laurence J.
    Barde, Fanny
    Bruce, Peter G.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (37) : 8609 - 8613
  • [9] A Highly Reversible Long-Life Li-CO2 Battery with a RuP2-Based Catalytic Cathode
    Guo, Ziyang
    Li, Jinli
    Qi, Haocheng
    Sun, Xuemei
    Li, Hongdong
    Tamirat, Andebet Gedamu
    Liu, Jie
    Wang, Yonggang
    Wang, Lei
    [J]. SMALL, 2019, 15 (29)
  • [10] A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells
    Hou, Yu
    Chen, Xiao
    Yang, Shuang
    Li, Chunzhong
    Zhao, Huijun
    Yang, Hua Gui
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (27)