On a Conjecture about the Fractal Structure of Language

被引:19
作者
Andres, Jan [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Math Anal, Olomouc 77146, Czech Republic
关键词
D O I
10.1080/09296171003643189
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
Two forms of Hrebicek's conjecture (formulated and explained in Hrebicek, 1992, 1994, 1997, 1998, 2002) about the fractal structure of language are clarified in terms of a precise mathematical formalism. This allows us, among other things, a more detailed understanding of Kohler's objections to the conjectures (Kohler, 1995, 1997). The approach using iterated function systems and the Moran-Hutchinson formula is newly applied to analyze and visualize linguistic structures. The role of a hyperspace is indicated in reply to questions posed in Leopold (2001). Some open problems are finally formulated in concluding remarks.
引用
收藏
页码:101 / 122
页数:22
相关论文
共 45 条
[1]  
Altmann G., 1989, Das Menzerathsche Gesetz in informationsverarbeitenden Systemen
[2]  
Altmann G., 1980, Glottometrika, V2, P1
[3]   Calculation of Lefschetz and Nielsen numbers in hyperspaces for fractals and dynamical systems [J].
Andres, J. ;
Vath, M. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) :479-487
[4]   Multivalued fractals [J].
Andres, J ;
Fiser, J ;
Gabor, G ;
Lesniak, K .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :665-700
[5]   Metric and topological multivalued fractals [J].
Andres, J ;
Fiser, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (04) :1277-1289
[6]  
Andres J., 2003, Topological Fixed Point Theory and Its Applications, V1
[7]  
[Anonymous], 1983, FRACTAL GEOMETRY NAT
[8]  
Barnsley M., 1988, FRACTALS EVERYWHERE
[9]  
Barnsley M.F., 2006, Superfractals
[10]  
Cooper DL., 1999, LINGUISTIC ATTRACTOR