Genome-Wide Characterization and Expression Analysis of HD-ZIP Gene Family in Dendrobium officinale

被引:11
|
作者
Yang, Qianyu [1 ]
Xiang, Weibo [2 ,3 ,4 ]
Li, Zhihui [1 ]
Nian, Yuxin [1 ]
Fu, Xiaoyun [1 ]
Zhou, Guangzhu [1 ]
Li, Linbao [2 ,3 ,4 ]
Zhang, Jun [2 ,3 ,4 ]
Huang, Guiyun [2 ,3 ,4 ]
Han, Xiao [5 ]
Xu, Lu [6 ]
Bai, Xiao [7 ]
Liu, Lei [7 ]
Wu, Di [2 ,3 ,4 ]
机构
[1] Shenyang Agr Univ, Coll Forestry, Shenyang, Peoples R China
[2] China Three Gorges Corp, Rare Plants Res Inst Yangtze River, Yichang, Peoples R China
[3] China Three Gorges Corp, Natl Engn Res Ctr Ecoenvironm Protect Yangtze Rive, Beijing, Peoples R China
[4] China Three Gorges Corp, YANGTZE Ecoenvironm Engn Res Ctr, Beijing, Peoples R China
[5] Nat Resources Affairs Serv Ctr Dalian, Dalian, Peoples R China
[6] Hunan Agr Univ, Coll Hort, Hunan Midsubtrop Qual Plant Breeding & Utilizat En, Changsha, Peoples R China
[7] Chinese Acad Forestry, Res Inst Forestry, State Key Lab Tree Genet & Breeding, Key Lab Tree Breeding & Cultivat,State Forestry Ad, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
HD-ZIP gene family; cold stress; Dendrobium officinale; expression profiles; transcription factor; ABIOTIC STRESS-RESPONSE; TRANSCRIPTION FACTOR; HOMEODOMAIN; ARABIDOPSIS; TOLERANCE; PROTEINS; REVEAL; WHEAT;
D O I
10.3389/fgene.2022.797014
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The homeodomain-leucine zipper (HD-ZIP) gene family, as one of the plant-specific transcription factor families, plays an important role in regulating plant growth and development as well as in response to diverse stresses. Although it has been extensively characterized in many plants, the HD-ZIP family is not well-studied in Dendrobium officinale, a valuable ornamental and traditional Chinese medicinal herb. In this study, 37 HD-ZIP genes were identified in Dendrobium officinale (Dohdzs) through the in silico genome search method, and they were classified into four subfamilies based on phylogenetic analysis. Exon-intron structure and conserved protein domain analyses further supported the prediction with the same group sharing similar gene and protein structures. Furthermore, their expression patterns were investigated in nine various tissues and under cold stress based on RNA-seq datasets to obtain the tissue-specific and cold-responsive candidates. Finally, Dohdz5, Dohdz9, and Dohdz12 were selected to validate their expression through qRT-PCR analysis, and they displayed significantly differential expression under sudden chilling stress, suggesting they might be the key candidates underlying cold stress response. These findings will contribute to better understanding of the regulatory roles of the HD-ZIP family playing in cold stress and also will provide the vital targets for further functional studies of HD-ZIP genes in D. officinale.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Genome-Wide Investigation and Expression Profiling of HD-Zip Transcription Factors in Foxtail Millet (Setaria italica L.)
    Chai, Wenbo
    Si, Weina
    Ji, Wei
    Qin, Qianqian
    Zhao, Manli
    Jiang, Haiyang
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [42] Genome-Wide Identification of Homeodomain Leucine Zipper (HD-ZIP) Transcription Factor, Expression Analysis, and Protein Interaction of HD-ZIP IV in Oil Palm Somatic Embryogenesis
    Khianchaikhan, Kamolwan
    Aroonluk, Suvichark
    Vuttipongchaikij, Supachai
    Jantasuriyarat, Chatchawan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [43] Genome-Wide Characterization and Expression Analysis of bZIP Gene Family Under Abiotic Stress in Glycyrrhiza uralensis
    Han, Yuxuan
    Hou, Zhuoni
    He, Qiuling
    Zhang, Xuemin
    Yan, Kaijing
    Han, Ruilian
    Liang, Zongsuo
    FRONTIERS IN GENETICS, 2021, 12
  • [44] Genome-wide identification and expression analysis of GRAS gene family in Eucalyptus grandis
    Lu, Haifei
    Xu, Jianmin
    Li, Guangyou
    Zhong, Tailin
    Chen, Danwei
    Lv, Jiabin
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [45] Genome-wide identification and expression analysis of growth-regulating factors in Dendrobium officinale and Dendrobium chrysotoxum
    Zhu, Shuying
    Wang, Hongman
    Xue, Qiqian
    Zou, Huasong
    Liu, Wei
    Xue, Qingyun
    Ding, Xiao-Yu
    PEERJ, 2023, 11
  • [46] Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale
    Wang, Tao
    Song, Zheng
    Wei, Li
    Li, Lubin
    GENES & GENOMICS, 2018, 40 (03) : 265 - 279
  • [47] Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses
    Sharif, Rahat
    Xie, Chen
    Wang, Jin
    Cao, Zhen
    Zhang, Haiqiang
    Chen, Peng
    Li, Yuhong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 158 : 502 - 520
  • [48] Genome-wide identification, phylogeny and function analysis of GRAS gene family in Dendrobium catenatum (Orchidaceae)
    Zeng, Xu
    Ling, Hong
    Chen, Xiaomei
    Guo, Shunxing
    GENE, 2019, 705 : 5 - 15
  • [49] Genome-wide analysis of the HD-ZIP IV transcription factor family in Gossypium arboreum and GaHDG11 involved in osmotic tolerance in transgenic Arabidopsis
    Chen, Eryong
    Zhang, Xueyan
    Yang, Zhaoen
    Wang, Xiaoqian
    Yang, Zuoren
    Zhang, Chaojun
    Wu, Zhixia
    Kong, Depei
    Liu, Zhao
    Zhao, Ge
    Butt, Hamama Islam
    Zhang, Xianlong
    Li, Fuguang
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (03) : 593 - 609
  • [50] Genome-Wide Analysis of the HD-Zip Gene Family in Chinese Cabbage (Brassica rapa subsp. pekinensis) and the Expression Pattern at High Temperatures and in Carotenoids Regulation
    Yin, Lian
    Sun, Yudong
    Chen, Xuehao
    Liu, Jiexia
    Feng, Kai
    Luo, Dexu
    Sun, Manyi
    Wang, Linchuang
    Xu, Wenzhao
    Liu, Lu
    Zhao, Jianfeng
    AGRONOMY-BASEL, 2023, 13 (05):