Group invariant solutions without transversality

被引:35
作者
Anderson, IM [1 ]
Fels, ME
Torre, CG
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Utah State Univ, Dept Phys, Logan, UT 84322 USA
关键词
D O I
10.1007/s002200000215
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalization of Lie's method for finding the group invariant solutions to a system of partial differential equations. Our generalization relaxes the standard transversality assumption and encompasses the common situation where the reduced differential equations for the group invariant solutions involve both fewer dependent and independent variables. The theoretical basis for our method is provided by a general existence theorem for the invariant sections, both local and global, of a bundle on which a finite dimensional Lie group acts. A simple and natural extension of our characterization of invariant sections leads to an intrinsic characterization of the reduced equations for the group invariant solutions for a system of differential equations. The characterization of both the invariant sections and the reduced equations are summarized schematically by the kinematic and dynamic reduction diagrams and are illustrated by a number of examples from fluid mechanics, harmonic maps, and general relativity. This work also provides the theoretical foundations for a further detailed study of the reduced equations for group invariant solutions.
引用
收藏
页码:653 / 686
页数:34
相关论文
共 42 条