Numerical solution of a transformed parabolic equation

被引:4
|
作者
Xu, H [1 ]
Zhang, C
机构
[1] Univ Windsor, Fac Engn, Dept Mech Automot & Mat Engn, Windsor, ON N9B 3P4, Canada
[2] Univ Western Ontario, Fac Engn Sci, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
关键词
transformed parabolic equation; fourth-order central differencing scheme; second-order differencing scheme; exponential function; analytical solution;
D O I
10.1016/S0096-3003(02)00222-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical analysis of a parabolic partial differential equation (PDE) which originates from the governing equations of transient fluid flow and heat transfer is presented. The parabolic PDE is transformed by introducing an exponential function to eliminate the convection terms in the equation. A fourth-order central differencing scheme and a second-order central differencing scheme are used to solve the transformed parabolic PDE numerically. The analytical solutions of this equation are also given. Comparisons against the analytical solutions are made for the numerical results using the present schemes and those using the four classical differencing schemes, namely, the first-order upwind scheme, hybrid scheme, power-law scheme, and exponential scheme. (C) 2002 Published by Elsevier Science Inc.
引用
收藏
页码:535 / 554
页数:20
相关论文
共 50 条
  • [31] An analytical solution for the population balance equation using a moment method
    Yu, Mingzhou
    Lin, Jianzhong
    Cao, Junji
    Seipenbusch, Martin
    PARTICUOLOGY, 2015, 18 : 194 - 200
  • [32] A NON-DIFFERENTIABLE SOLUTION FOR THE LOCAL FRACTIONAL TELEGRAPH EQUATION
    Li, Jie
    Zhang, Ce
    Liu, Weixing
    Zhang, Yuzhu
    Yang, Aimin
    Zhang, Ling
    THERMAL SCIENCE, 2017, 21 : S225 - S231
  • [33] An analytical solution for the population balance equation using a moment method
    Mingzhou Yu
    Jianzhong Lin
    Junji Cao
    Martin Seipenbusch
    Particuology, 2015, 18 (01) : 194 - 200
  • [34] A solution of the time-dependent advection-diffusion equation
    Tirabassi, Tiziano
    Silva, Everson J. G.
    Buske, Daniela
    Vilhena, Marco T.
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2019, 65 (1-3) : 211 - 228
  • [35] Analytical solution of one-dimensional Pennes' bioheat equation
    Wang, Hongyun
    Burgei, Wesley A.
    Zhou, Hong
    OPEN PHYSICS, 2020, 18 (01): : 1084 - 1092
  • [36] A note on the solution of perturbed Korteweg-de Vries equation
    Demiray, H
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 132 (2-3) : 643 - 647
  • [37] AVF inversion based on analytical solution of viscous acoustic equation
    Yang W.
    Li Y.
    Huang Y.
    Li J.
    Wang E.
    Zhou C.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (06): : 1293 - 1300
  • [38] An analytical solution for two and three dimensional nonlinear Burgers' equation
    Gao, Q.
    Zou, M. Y.
    APPLIED MATHEMATICAL MODELLING, 2017, 45 : 255 - 270
  • [39] A semi-analytical solution of Hunter-Saxton equation
    Arbabi, Somayeh
    Nazari, Akbar
    Darvishi, Mohammad Taghi
    OPTIK, 2016, 127 (13): : 5255 - 5258
  • [40] Exact solution of the diffusion-convection equation in cylindrical geometry
    Ivanchenko, Oleksandr
    Sindhwani, Nikhil
    Linninger, Andreas A.
    AICHE JOURNAL, 2012, 58 (04) : 1299 - 1302