Pathways of ocean heat towards Pine Island and Thwaites grounding lines

被引:55
作者
Nakayama, Yoshihiro [1 ,2 ]
Manucharyan, Georgy [3 ]
Zhang, Hong [1 ]
Dutrieux, Pierre [4 ]
Torres, Hector S. [1 ]
Klein, Patrice [1 ,5 ]
Seroussi, Helene [1 ]
Schodlok, Michael [1 ]
Rignot, Eric [1 ,6 ]
Menemenlis, Dimitris [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA
[2] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido, Japan
[3] CALTECH, Pasadena, CA 91125 USA
[4] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA
[5] UBO, CNRS, IFREMER, Lab Phys Oceans,IRD, Plouzane, France
[6] Univ Calif Irvine, Earth Syst Sci, Irvine, CA USA
关键词
CIRCUMPOLAR DEEP-WATER; AMUNDSEN SEA EMBAYMENT; ANTARCTIC ICE SHELVES; WEST ANTARCTICA; GLACIAL MELTWATER; CIRCULATION; VARIABILITY; MELT; RETREAT; MODEL;
D O I
10.1038/s41598-019-53190-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the Amundsen Sea, modified Circumpolar Deep Water (mCDW) intrudes into ice shelf cavities, causing high ice shelf melting near the ice sheet grounding lines, accelerating ice flow, and controlling the pace of future Antarctic contributions to global sea level. The pathways of mCDW towards grounding lines are crucial as they directly control the heat reaching the ice. A realistic representation of mCDW circulation, however, remains challenging due to the sparsity of in-situ observations and the difficulty of ocean models to reproduce the available observations. In this study, we use an unprecedentedly high-resolution (200 m horizontal and 10 m vertical grid spacing) ocean model that resolves shelf-sea and sub-ice-shelf environments in qualitative agreement with existing observations during austral summer conditions. We demonstrate that the waters reaching the Pine Island and Thwaites grounding lines follow specific, topographically-constrained routes, all passing through a relatively small area located around 104 degrees W and 74.3 degrees S. The temporal and spatial variabilities of ice shelf melt rates are dominantly controlled by the sub-ice shelf ocean current. Our findings highlight the importance of accurate and high-resolution ocean bathymetry and subglacial topography for determining mCDW pathways and ice shelf melt rates.
引用
收藏
页数:9
相关论文
共 53 条
[1]   The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0-A new bathymetric compilation covering circum-Antarctic waters [J].
Arndt, Jan Erik ;
Schenke, Hans Werner ;
Jakobsson, Martin ;
Nitsche, Frank O. ;
Buys, Gwen ;
Goleby, Bruce ;
Rebesco, Michele ;
Bohoyo, Fernando ;
Hong, Jongkuk ;
Black, Jenny ;
Greku, Rudolf ;
Udintsev, Gleb ;
Barrios, Felipe ;
Reynoso-Peralta, Walter ;
Taisei, Morishita ;
Wigley, Rochelle .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (12) :3111-3117
[2]   Variability of Circumpolar Deep Water transport onto the Amundsen Sea continental shelf through a shelf break trough [J].
Assmann, K. M. ;
Jenkins, A. ;
Shoosmith, D. R. ;
Walker, D. P. ;
Jacobs, S. S. ;
Nicholls, K. W. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (12) :6603-6620
[3]   Variability in Basal Melting Beneath Pine Island Ice Shelf on Weekly to Monthly Timescales [J].
Davis, Peter E. D. ;
Jenkins, Adrian ;
Nicholls, Keith W. ;
Brennan, Paul V. ;
Abrahamsen, E. Povl ;
Heywood, Karen J. ;
Dutrieux, Pierre ;
Cho, Kyoung-Ho ;
Kim, Tae-Wan .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (11) :8655-8669
[4]   Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge [J].
De Rydt, J. ;
Gudmundsson, G. H. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2016, 121 (05) :865-880
[5]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[6]   Calving fluxes and basal melt rates of Antarctic ice shelves [J].
Depoorter, M. A. ;
Bamber, J. L. ;
Griggs, J. A. ;
Lenaerts, J. T. M. ;
Ligtenberg, S. R. M. ;
van den Broeke, M. R. ;
Moholdt, G. .
NATURE, 2013, 502 (7469) :89-+
[7]   Modeling Ice Shelf/Ocean in Antarctica A REVIEW [J].
Dinniman, Michael S. ;
Asay-Davis, Xylar S. ;
Galton-Fenzi, Benjamin K. ;
Holland, Paul R. ;
Jenkins, Adrian ;
Timmermann, Ralph .
OCEANOGRAPHY, 2016, 29 (04) :144-153
[8]   A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves [J].
Dinniman, Michael S. ;
Klinck, John M. ;
Smith, Walker O., Jr. .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2011, 58 (13-16) :1508-1523
[9]   Pine Island glacier ice shelf melt distributed at kilometre scales [J].
Dutrieux, P. ;
Vaughan, D. G. ;
Corr, H. F. J. ;
Jenkins, A. ;
Holland, P. R. ;
Joughin, I. ;
Fleming, A. H. .
CRYOSPHERE, 2013, 7 (05) :1543-1555
[10]   Basal terraces on melting ice shelves [J].
Dutrieux, Pierre ;
Stewart, Craig ;
Jenkins, Adrian ;
Nicholls, Keith W. ;
Corr, Hugh F. J. ;
Rignot, Eric ;
Steffen, Konrad .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (15) :5506-5513