On the use of kernel PCA for feature extraction in speech recognition

被引:0
|
作者
Lima, A [1 ]
Zen, H [1 ]
Nankaku, Y [1 ]
Miyajima, C [1 ]
Tokuda, K [1 ]
Kitamura, T [1 ]
机构
[1] Nagoya Inst Technol, Dept Comp Sci & Engn, Nagoya, Aichi 4668555, Japan
关键词
kernel; feature space; principal component analysis; feature extraction; speech recognition;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes an approach to feature extraction in speech recognition systems using kernel principal component analysis (KPCA). This approach represents speech features as the projection of the mel-cepstral coefficients mapped into a feature space via a non-linear mapping onto the principal components. The non-linear mapping is implicitly performed using the kernel-trick, which is a useful way of not mapping the input space into a feature space explicitly, making this mapping computationally feasible. It is shown that the application of dynamic (Delta) and acceleration (DeltaDelta) coefficients, before and/or after the KPCA feature extraction procedure, is essential in order to obtain higher classification performance. Better results were obtained by using this approach when compared to the standard technique.
引用
收藏
页码:2802 / 2811
页数:10
相关论文
共 50 条
  • [41] Robust Feature Extraction Methods for Speech Recognition in Noisy Environments
    Mukheolkar, Ajinkya Sunil
    Alex, John Sahaya Rani
    2014 FIRST INTERNATIONAL CONFERENCE ON NETWORKS & SOFT COMPUTING (ICNSC), 2014, : 295 - 299
  • [42] A Correlational Discriminant Approach to Feature Extraction for Robust Speech Recognition
    Tomar, Vikrant Singh
    Rose, Richard C.
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 554 - 557
  • [43] Feature extraction algorithms to improve the speech emotion recognition rate
    Anusha Koduru
    Hima Bindu Valiveti
    Anil Kumar Budati
    International Journal of Speech Technology, 2020, 23 : 45 - 55
  • [44] Physiologically Motivated Feature Extraction for Robust Automatic Speech Recognition
    Missaoui, Ibrahim
    Lachiri, Zied
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (04) : 297 - 301
  • [45] Emotional Speech Recognition Based on Syllable Distribution Feature Extraction
    Zhang, Haiying
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISKE 2011), 2011, 122 : 415 - 420
  • [46] Robust Feature Extraction for Speech Recognition by Enhancing Auditory Spectrum
    Alam, Md Jahangir
    Kenny, Patrick
    O'Shaughnessy, Douglas
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 1358 - 1361
  • [47] Feature extraction algorithms to improve the speech emotion recognition rate
    Koduru, Anusha
    Valiveti, Hima Bindu
    Budati, Anil Kumar
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2020, 23 (01) : 45 - 55
  • [48] Kernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and Recognition
    Zhang, Di
    He, Jiazhong
    Zhao, Yun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2013, 6 (06) : 1059 - 1071
  • [49] Complete discriminant evaluation and feature extraction in kernel space for face recognition
    Xudong Jiang
    Bappaditya Mandal
    Alex Kot
    Machine Vision and Applications, 2009, 20 : 35 - 46
  • [50] Complete discriminant evaluation and feature extraction in kernel space for face recognition
    Jiang, Xudong
    Mandal, Bappaditya
    Kot, Alex
    MACHINE VISION AND APPLICATIONS, 2009, 20 (01) : 35 - 46