Self-equilibration of the radius distribution in self-catalyzed GaAs nanowires

被引:0
|
作者
Leshchenko, E. D. [1 ,2 ]
Turchina, M. A. [2 ]
Dubrovskii, V. G. [2 ,3 ,4 ]
机构
[1] St Petersburg State Univ, Ulianovskaya St 3, St Petersburg 198504, Russia
[2] St Petersburg Acad Univ, Khlopina 8-3, St Petersburg 194021, Russia
[3] Russian Acad Sci, Ioffe Phys Tech Inst, Politekh Skaya 26, St Petersburg 194021, Russia
[4] ITMO Univ, Kronverkskiy Pr 49, St Petersburg 197101, Russia
来源
3RD INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SAINT PETERSBURG OPEN 2016) | 2016年 / 741卷
关键词
GROWTH;
D O I
10.1088/1742-6596/741/1/012033
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work addresses the evolution of radius distribution function in self-catalyzed vapor-liquid-solid growth of GaAs nanowires from Ga droplets. Different growth regimes are analyzed depending on the V/III flux ratio. In particular, we find a very unusual self-equilibration regime in which the radius distribution narrows up to a certain stationary radius regardless of the initial size distribution of Ga droplets. This requires that the arsenic vapor flux is larger than the gallium one and that the V/III influx imbalance is compensated by a diffusion flux of gallium adatoms. Approximate analytical solution is compared to the numerical radius distribution obtained by solving the corresponding Fokker-Planck equation by the implicit difference scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Misorientation defects in coalesced self-catalyzed GaN nanowires
    Grossklaus, K. A.
    Banerjee, A.
    Jahangir, S.
    Bhattacharya, P.
    Millunchick, J. M.
    JOURNAL OF CRYSTAL GROWTH, 2013, 371 : 142 - 147
  • [12] Doping of Self-Catalyzed Nanowires under the Influence of Droplets
    Zhang, Yunyan
    Sun, Zhiyuan
    Sanchez, Ana M.
    Ramsteiner, Manfred
    Aagesen, Martin
    Wu, Jiang
    Kim, Dongyoung
    Jurczak, Pamela
    Huo, Suguo
    Lauhon, Lincoln J.
    Liu, Huiyun
    NANO LETTERS, 2018, 18 (01) : 81 - 87
  • [13] Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Nanowire-Quantum Dots on Si Substrates
    Boras, Giorgos
    Yu, Xuezhe
    Fonseka, H. Aruni
    Davis, George
    Velichko, Anton V.
    Gott, James A.
    Zeng, Haotian
    Wu, Shiyao
    Parkinson, Patrick
    Xu, Xiulai
    Mowbray, David
    Sanchez, Ana M.
    Liu, Huiyun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (26) : 14338 - 14347
  • [14] Stable Self-Catalyzed Growth of III-V Nanowires
    Tersoff, J.
    NANO LETTERS, 2015, 15 (10) : 6609 - 6613
  • [15] Determination of the Optimal Shell Thickness for Self-Catalyzed GaAs/AlGaAs Core-Shell Nanowires on Silicon
    Songmuang, R.
    Le Thuy Thanh Giang
    Bleuse, J.
    Den Hertog, M.
    Niquet, Y. M.
    Dang, Le Si
    Mariette, H.
    NANO LETTERS, 2016, 16 (06) : 3426 - 3433
  • [16] Lithography-free variation of the number density of self-catalyzed GaAs nanowires and its impact on polytypism
    Schroth, Philipp
    Jakob, Julian
    Feigl, Ludwig
    Kashani, Seyed Mohammad Mostafavi
    Pietsch, Ullrich
    Baumbach, Tilo
    MRS COMMUNICATIONS, 2018, 8 (03) : 871 - 877
  • [17] The synthesis of PrB6 nanowires and nanotubes by the self-catalyzed method
    Chi, Mingfeng
    Zhao, Yanming
    Fan, Qinghua
    Han, Wei
    CERAMICS INTERNATIONAL, 2014, 40 (06) : 8921 - 8924
  • [18] Formation of wurtzite sections in self-catalyzed GaP nanowires by droplet consumption
    Fedorov, V. V.
    Dvoretckaia, L. N.
    Kirilenko, D. A.
    Mukhin, I. S.
    Dubrovskii, V. G.
    NANOTECHNOLOGY, 2021, 32 (49)
  • [19] Self-Catalyzed CdTe Wires
    Baines, Tom
    Papageorgiou, Giorgos
    Hutter, Oliver S.
    Bowen, Leon
    Durose, Ken
    Major, Jonathan D.
    NANOMATERIALS, 2018, 8 (05):
  • [20] Fundamental aspects to localize self-catalyzed III-V nanowires on silicon
    Vukajlovic-Plestina, J.
    Kim, W.
    Ghisalberti, L.
    Varnavides, G.
    Tuetuencuoglu, G.
    Potts, H.
    Friedl, M.
    Gueniat, L.
    Carter, W. C.
    Dubrovskii, V. G.
    Fontcuberta i Morral, A.
    NATURE COMMUNICATIONS, 2019, 10 (1)