Self-equilibration of the radius distribution in self-catalyzed GaAs nanowires

被引:0
|
作者
Leshchenko, E. D. [1 ,2 ]
Turchina, M. A. [2 ]
Dubrovskii, V. G. [2 ,3 ,4 ]
机构
[1] St Petersburg State Univ, Ulianovskaya St 3, St Petersburg 198504, Russia
[2] St Petersburg Acad Univ, Khlopina 8-3, St Petersburg 194021, Russia
[3] Russian Acad Sci, Ioffe Phys Tech Inst, Politekh Skaya 26, St Petersburg 194021, Russia
[4] ITMO Univ, Kronverkskiy Pr 49, St Petersburg 197101, Russia
来源
3RD INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SAINT PETERSBURG OPEN 2016) | 2016年 / 741卷
关键词
GROWTH;
D O I
10.1088/1742-6596/741/1/012033
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work addresses the evolution of radius distribution function in self-catalyzed vapor-liquid-solid growth of GaAs nanowires from Ga droplets. Different growth regimes are analyzed depending on the V/III flux ratio. In particular, we find a very unusual self-equilibration regime in which the radius distribution narrows up to a certain stationary radius regardless of the initial size distribution of Ga droplets. This requires that the arsenic vapor flux is larger than the gallium one and that the V/III influx imbalance is compensated by a diffusion flux of gallium adatoms. Approximate analytical solution is compared to the numerical radius distribution obtained by solving the corresponding Fokker-Planck equation by the implicit difference scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires
    Dubrovskii, V. G.
    Xu, T.
    Alvarez, A. Diaz
    Plissard, S. R.
    Caroff, P.
    Glas, F.
    Grandidier, B.
    NANO LETTERS, 2015, 15 (08) : 5580 - 5584
  • [2] Phase Selection in Self-catalyzed GaAs Nanowires
    Panciera, Federico
    Baraissov, Zhaslan
    Patriarche, Gilles
    Dubrovskii, Vladimir G.
    Glas, Frank
    Travers, Laurent
    Mirsaidov, Utkur
    Harmand, Jean-Christophe
    NANO LETTERS, 2020, 20 (03) : 1669 - 1675
  • [3] Te-doping of self-catalyzed GaAs nanowires
    Suomalainen, S.
    Hakkarainen, T. V.
    Salminen, T.
    Koskinen, R.
    Honkanen, M.
    Luna, E.
    Guina, Mircea
    APPLIED PHYSICS LETTERS, 2015, 107 (01)
  • [4] Self-catalyzed GaAs(P) nanowires and their application for solar cells
    Zhang, Yunyan
    Liu, Huiyun
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (23)
  • [5] Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon
    Matteini, Federico
    Dubrovskii, Vladimir G.
    Rueffer, Daniel
    Tuetuencueoglu, Goezde
    Fontana, Yannik
    Morral, Anna Fontcuberta I.
    NANOTECHNOLOGY, 2015, 26 (10)
  • [6] Gradients of Be-dopant concentration in self-catalyzed GaAs nanowires
    Piton, Marcelo Rizzo
    Koivusalo, Eero
    Hakkarainen, Teemu
    Avanco Galeti, Helder Vinicius
    Rodrigues, Ariano De Giovanni
    Talmila, Soile
    Souto, Sergio
    Lupo, Donald
    Gobato, Yara Galvao
    Guina, Mircea
    NANOTECHNOLOGY, 2019, 30 (33)
  • [7] Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy
    Dong, Zhenning
    Andre, Yamina
    Dubrovskii, Vladimir G.
    Bougerol, Catherine
    Leroux, Christine
    Ramdani, Mohammed R.
    Monier, Guillaume
    Trassoudaine, Agnes
    Castelluci, Dominique
    Gil, Evelyne
    NANOTECHNOLOGY, 2017, 28 (12)
  • [8] Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate
    Yamaguchi, Masahito
    Paek, Ji-Hyun
    Amano, Hiroshi
    NANOSCALE RESEARCH LETTERS, 2012, 7 : 1 - 5
  • [9] Crystal phase engineering of self-catalyzed GaAs nanowires using a RHEED diagram
    Dursap, T.
    Vettori, M.
    Danescu, A.
    Botella, C.
    Regreny, P.
    Patriarche, G.
    Gendry, M.
    Penuelas, J.
    NANOSCALE ADVANCES, 2020, 2 (05): : 2127 - 2134
  • [10] Modeling the dynamics of interface morphology and crystal phase change in self-catalyzed GaAs nanowires
    Wilson, D. P.
    Sokolovskii, A. S.
    LaPierre, R. R.
    Panciera, F.
    Glas, F.
    Dubrovskii, V. G.
    NANOTECHNOLOGY, 2020, 31 (48)