Input Agnostic Deep Learning for Alzheimer's Disease Classification Using Multimodal MRI Images

被引:9
作者
Massalimova, Aidana [1 ]
Varol, Huseyin Atakan [1 ]
机构
[1] Nazarbayev Univ, Inst Smart Syst & Artificial Intelligence, 53 Kabanbay Batyr Ave, Nur Sultan City 010000, Kazakhstan
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
DIAGNOSIS;
D O I
10.1109/EMBC46164.2021.9629807
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments. The advances in machine learning and publicly available medical datasets initiated multiple studies in AD diagnosis. In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes on the basis of structural MRI and diffusion tensor imaging (DTI) scans from the OASIS-3 dataset. In addition to a conventional multi-modal network, we also present an input agnostic architecture that allows diagnosis with either sMRI or DTI scan, which distinguishes our method from previous multi-modal machine learning-based methods. The results show that the input agnostic model achieves 0.96 accuracy when both structural MRI and DTI scans are provided as inputs.
引用
收藏
页码:2875 / 2878
页数:4
相关论文
共 18 条
[11]   Predicting Alzheimer's disease progression using multi-modal deep learning approach [J].
Lee, Garam ;
Nho, Kwangsik ;
Kang, Byungkon ;
Sohn, Kyung-Ah ;
Kim, Dokyoon ;
Weiner, Michael W. ;
Aisen, Paul ;
Petersen, Ronald ;
Jack, Clifford R., Jr. ;
Jagust, William ;
Trojanowki, John Q. ;
Toga, Arthur W. ;
Beckett, Laurel ;
Green, Robert C. ;
Saykin, Andrew J. ;
Morris, John ;
Shaw, Leslie M. ;
Khachaturian, Zaven ;
Sorensen, Greg ;
Carrillo, Maria ;
Kuller, Lew ;
Raichle, Marc ;
Paul, Steven ;
Davies, Peter ;
Fillit, Howard ;
Hefti, Franz ;
Holtzman, Davie ;
Mesulam, M. Marcel ;
Potter, William ;
Snyder, Peter ;
Montine, Tom ;
Thomas, Ronald G. ;
Donohue, Michael ;
Walter, Sarah ;
Sather, Tamie ;
Jiminez, Gus ;
Balasubramanian, Archana B. ;
Mason, Jennifer ;
Sim, Iris ;
Harvey, Danielle ;
Bernstein, Matthew ;
Fox, Nick ;
Thompson, Paul ;
Schuff, Norbert ;
DeCArli, Charles ;
Borowski, Bret ;
Gunter, Jeff ;
Senjem, Matt ;
Vemuri, Prashanthi ;
Jones, David .
SCIENTIFIC REPORTS, 2019, 9 (1)
[12]   A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal magnetic resonance imaging data [J].
Li, Hongming ;
Habes, Mohamad ;
Wolk, David A. ;
Fan, Yong .
ALZHEIMERS & DEMENTIA, 2019, 15 (08) :1059-1070
[13]  
Lopez JAS, 2019, HAND CLINIC, V167, P231, DOI 10.1016/B978-0-12-804766-8.00013-3
[14]  
Mueller Susanne G, 2005, Alzheimers Dement, V1, P55, DOI 10.1016/j.jalz.2005.06.003
[15]   Mapping scores onto stages: Mini-mental state examination and clinical dementia rating [J].
Perneczky, R ;
Wagenpfeil, S ;
Komossa, K ;
Grimmer, T ;
Diehl, J ;
Kurz, A .
AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2006, 14 (02) :139-144
[16]   A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease [J].
Sexton, Claire E. ;
Kalu, Ukwuori G. ;
Filippini, Nicola ;
Mackay, Clare E. ;
Ebmeier, Klaus P. .
NEUROBIOLOGY OF AGING, 2011, 32 (12) :2322.e5-2322.e18
[17]   Combining MR Imaging, Positron-Emission Tomography, and CSF Biomarkers in the Diagnosis and Prognosis of Alzheimer Disease [J].
Walhovd, K. B. ;
Fjell, A. M. ;
Brewer, J. ;
McEvoy, L. K. ;
Fennema-Notestine, C. ;
Hagler, D. J., Jr. ;
Jennings, R. G. ;
Karow, D. ;
Dale, A. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2010, 31 (02) :347-354
[18]   Improved Adam Optimizer for Deep Neural Networks [J].
Zhang, Zijun .
2018 IEEE/ACM 26TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2018,