Input Agnostic Deep Learning for Alzheimer's Disease Classification Using Multimodal MRI Images

被引:9
作者
Massalimova, Aidana [1 ]
Varol, Huseyin Atakan [1 ]
机构
[1] Nazarbayev Univ, Inst Smart Syst & Artificial Intelligence, 53 Kabanbay Batyr Ave, Nur Sultan City 010000, Kazakhstan
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
DIAGNOSIS;
D O I
10.1109/EMBC46164.2021.9629807
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments. The advances in machine learning and publicly available medical datasets initiated multiple studies in AD diagnosis. In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes on the basis of structural MRI and diffusion tensor imaging (DTI) scans from the OASIS-3 dataset. In addition to a conventional multi-modal network, we also present an input agnostic architecture that allows diagnosis with either sMRI or DTI scan, which distinguishes our method from previous multi-modal machine learning-based methods. The results show that the input agnostic model achieves 0.96 accuracy when both structural MRI and DTI scans are provided as inputs.
引用
收藏
页码:2875 / 2878
页数:4
相关论文
共 18 条
[1]   Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities [J].
Aderghal, Karim ;
Afdel, Karim ;
Benois-Pineau, Jenny ;
Catheline, Gwenaelle .
HELIYON, 2020, 6 (12)
[2]   Diffusion tensor imaging of the brain [J].
Alexander, Andrew L. ;
Lee, Jee Eun ;
Lazar, Mariana ;
Field, Aaron S. .
NEUROTHERAPEUTICS, 2007, 4 (03) :316-329
[3]   2018 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :367-425
[4]   Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks [J].
Basaia, Silvia ;
Agosta, Federica ;
Wagner, Luca ;
Canu, Elisa ;
Magnani, Giuseppe ;
Santangelo, Roberto ;
Filippi, Massimo .
NEUROIMAGE-CLINICAL, 2019, 21
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]   A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain [J].
Ding, Yuming ;
Sohn, Jae Ho ;
Kawczynski, Michael G. ;
Trivedi, Hari ;
Harnish, Roy ;
Jenkins, Nathaniel W. ;
Lituiev, Dmytro ;
Copeland, Timothy P. ;
Aboian, Mariam S. ;
Aparici, Carina Mari ;
Behr, Spencer C. ;
Flavell, Robert R. ;
Huang, Shih-Ying ;
Zalocusky, Kelly A. ;
Nardo, Lorenzo ;
Seo, Youngho ;
Hawkins, Randall A. ;
Pampaloni, Miguel Hernandez ;
Hadley, Dexter ;
Franc, Benjamin L. .
RADIOLOGY, 2019, 290 (02) :456-464
[7]   Recent Progress in Alzheimer's Disease Research, Part 3: Diagnosis and Treatment [J].
Hane, Francis T. ;
Robinson, Morgan ;
Lee, Brenda Y. ;
Bai, Owen ;
Leonenko, Zoya ;
Albert, Mitchell S. .
JOURNAL OF ALZHEIMERS DISEASE, 2017, 57 (03) :645-665
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Identifying Early Mild Cognitive Impairment by Multi-Modality MRI-Based Deep Learning [J].
Kang, Li ;
Jiang, Jingwan ;
Huang, Jianjun ;
Zhang, Tijiang .
FRONTIERS IN AGING NEUROSCIENCE, 2020, 12
[10]  
LaMontagne PJ., 2019, OASIS 3 LONGITUDINAL