Selecting traits to increase winter wheat yield under climate change in the North China Plain

被引:35
|
作者
Fang, Qin [1 ,2 ]
Zhang, Xiying [1 ]
Chen, Suying [1 ]
Shao, Liwei [1 ]
Sun, Hongyong [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Agr Resources Res, Key Lab Agr Water Resources, Shijiazhuang 050021, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100094, Peoples R China
关键词
Winter wheat; Climate change; Seasonal yield variation; Root distribution; Canopy temperature; CARBON-ISOTOPE DISCRIMINATION; CANOPY TEMPERATURE DEPRESSION; WATER-USE EFFICIENCY; RAIN-FED CONDITIONS; GRAIN-YIELD; PLANTING DATES; GENETIC GAIN; DRY-MATTER; DECADES; IMPACTS;
D O I
10.1016/j.fcr.2017.03.005
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To mitigate the possible yield reduction of winter wheat under climate change in the North China Plain (NCP), cultivars with traits that could offset the negative effects of several deteriorating weather factors in the future should be developed. This study used 16 recently certified cultivars of winter wheat each season for five seasons from 2011 to 2016 under three irrigation treatments (10: without irrigation; 11: moderate irrigation; and 12: well water supply) to examine the agronomic traits of winter wheat that may be able to reduce the negative effects of abiotic stress. Yield variation up to 32% was observed during the five seasons, indicating the significant effects of seasonal weather conditions. The yield difference among the cultivars reached 33%, indicating the benefit of selecting a better cultivar to minimize the negative effects of weather and water deficit. Cultivars with higher seed numbers per area and greater biomass usually gave better grain production under all three water supply conditions. Under good water supply conditions, sunshine duration during the vegetative growth stage significantly affected the spike numbers per area and seed numbers per spike. Diurnal temperature range (DTR) during the grain-fill stage was positively related to the seed weight. Cultivars with higher leaf photosynthetic rates and earlier anthesis dates had an advantage to relieve the influence of climate change and produced higher yield. Due to the reduced rainfall and increased atmospheric evaporation potential under the climate change background, for winter wheat grown under limited water supply, cultivars witha higher kernel Delta C-13, a lower canopy temperature and a larger root system usually produced a higher yield. In general, for winter wheat grown under good water supply conditions, cultivars that had higher efficiency in dry matter assimilation and allocation performed better. Under dry conditions, cultivars with a high ability to use the soil water stored before sowing had an advantage that allowed them to produce a higher yield. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 41
页数:12
相关论文
共 50 条
  • [31] Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain
    Sun, Hong-Yong
    Liu, Chang-Ming
    Zhang, Xi-Ying
    Shen, Yan-Jun
    Zhang, Yong-Qiang
    AGRICULTURAL WATER MANAGEMENT, 2006, 85 (1-2) : 211 - 218
  • [32] Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain
    Xu, Xuexin
    Zhang, Meng
    Li, Jinpeng
    Liu, Zuqiang
    Zhao, Zhigan
    Zhang, Yinghua
    Zhou, Shunli
    Wang, Zhimin
    FIELD CROPS RESEARCH, 2018, 221 : 219 - 227
  • [33] Yield and water use response of winter wheat to winter irrigation in the North China Plain
    Shao, L. W.
    Zhang, X. Y.
    Sun, H. Y.
    Chen, S. Y.
    Wang, Y. M.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2011, 66 (02) : 104 - 113
  • [34] Decreasing wheat yield stability on the North China Plain: Relative contributions from climate change in mean and variability
    Liu, Weihang
    Ye, Tao
    Shi, Peijun
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 : E2820 - E2833
  • [35] Physiological traits contributed to the recent increase in yield potential of winter wheat from Henan Province, China
    Zhou, Bangwei
    Sanz-Saez, Alvaro
    Elazab, Abdelhalim
    Shen, Tianmin
    Sanchez-Bragado, Rut
    Bort, Jordi
    Dolors Serret, Maria
    Luis Araus, Jose
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2014, 56 (05) : 492 - 504
  • [36] The Economic Impact of Climate Change on Wheat and Maize Yields in the North China Plain
    Song, Chunxiao
    Huang, Xiao
    Les, Oxley
    Ma, Hengyun
    Liu, Ruifeng
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (09)
  • [37] Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes
    Yang, Rui
    Dai, Panhong
    Wang, Bin
    Jin, Tao
    Liu, Ke
    Fahad, Shah
    Harrison, Matthew Tom
    Man, Jianguo
    Shang, Jiandong
    Meinke, Holger
    Liu, Deli
    Wang, Xiaoyan
    Zhang, Yunbo
    Zhou, Meixue
    Tian, Yingbing
    Yan, Haoliang
    AGRONOMY-BASEL, 2022, 12 (01):
  • [38] Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning
    Bai, Huizi
    Xiao, Dengpan
    Tang, Jianzhao
    Liu, De Li
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 217
  • [39] Future climate change impacts on wheat grain yield and protein in the North China Region
    Zhang, Di
    Liu, Jinna
    Li, Dongxiao
    Batchelor, William D.
    Wu, Dongxia
    Zhen, Xiaoxing
    Ju, Hui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 902
  • [40] Effects of water and heat on growth of winter wheat in the North China Plain
    Wang, Hongyan
    Li, Qiangzi
    Du, Xin
    Lu, Yewei
    Liu, Jilei
    GEOCARTO INTERNATIONAL, 2016, 31 (02) : 210 - 224