A Review on Deep Learning Applications in Prognostics and Health Management
被引:139
|
作者:
Zhang, Liangwei
论文数: 0引用数: 0
h-index: 0
机构:
Dongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R China
Lulea Univ Technol, Div Operat & Maintenance Engn, S-97187 Lulea, SwedenDongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R China
Zhang, Liangwei
[1
,2
]
Lin, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Lulea Univ Technol, Div Operat & Maintenance Engn, S-97187 Lulea, SwedenDongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R China
Lin, Jing
[2
]
Liu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strathclyde, Dept Management Sci, Glasgow G1 1XQ, Lanark, ScotlandDongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R China
Liu, Bin
[3
]
Zhang, Zhicong
论文数: 0引用数: 0
h-index: 0
机构:
Dongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R ChinaDongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R China
Zhang, Zhicong
[1
]
Yan, Xiaohui
论文数: 0引用数: 0
h-index: 0
机构:
Dongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R ChinaDongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R China
Yan, Xiaohui
[1
]
Wei, Muheng
论文数: 0引用数: 0
h-index: 0
机构:
CSSC Syst Engn Res Inst, Ocean Intelligent Technol Innovat Ctr, Beijing 100073, Peoples R ChinaDongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R China
Wei, Muheng
[4
]
机构:
[1] Dongguan Univ Technol, Dept Ind Engn, Dongguan 523808, Peoples R China
[2] Lulea Univ Technol, Div Operat & Maintenance Engn, S-97187 Lulea, Sweden
Prognostics and health management;
Deep learning;
Fault detection;
Fault diagnosis;
Feature extraction;
Vibrations;
Image reconstruction;
Condition-based maintenance;
deep learning;
fault detection;
fault diagnosis;
prognosis;
CONVOLUTIONAL NEURAL-NETWORK;
FAULT-DIAGNOSIS METHOD;
USEFUL LIFE PREDICTION;
ANOMALY DETECTION;
BELIEF NETWORKS;
MACHINE;
AUTOENCODER;
ENSEMBLE;
MODEL;
SYSTEMS;
D O I:
10.1109/ACCESS.2019.2950985
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Deep learning has attracted intense interest in Prognostics and Health Management (PHM), because of its enormous representing power, automated feature learning capability and best-in-class performance in solving complex problems. This paper surveys recent advancements in PHM methodologies using deep learning with the aim of identifying research gaps and suggesting further improvements. After a brief introduction to several deep learning models, we review and analyze applications of fault detection, diagnosis and prognosis using deep learning. The survey validates the universal applicability of deep learning to various types of input in PHM, including vibration, imagery, time-series and structured data. It also reveals that deep learning provides a one-fits-all framework for the primary PHM subfields: fault detection uses either reconstruction error or stacks a binary classifier on top of the network to detect anomalies; fault diagnosis typically adds a soft-max layer to perform multi-class classification; prognosis adds a continuous regression layer to predict remaining useful life. The general framework suggests the possibility of transfer learning across PHM applications. The survey reveals some common properties and identifies the research gaps in each PHM subfield. It concludes by summarizing some major challenges and potential opportunities in the domain.
机构:
Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
Samsung Elect, DIT Ctr, Hwaseong Si 18448, South KoreaSeoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
Choi, Kukjin
Yi, Jihun
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South KoreaSeoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
Yi, Jihun
Park, Changhwa
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
AIRS Co, Hyundai Motor Grp, Seoul 06797, South KoreaSeoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
Park, Changhwa
Yoon, Sungroh
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South KoreaSeoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
机构:
Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Cheng, Wei
Ahmad, Hassaan
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Ahmad, Hassaan
Gao, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Gao, Lin
Xing, Ji
论文数: 0引用数: 0
h-index: 0
机构:
China Nucl Power Engn Co, Beijing 100840, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Xing, Ji
Nie, Zelin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Nie, Zelin
Chen, Xuefeng
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Chen, Xuefeng
Xu, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
China Nucl Power Engn Co, Beijing 100840, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
Xu, Zhao
Zhang, Rongyong
论文数: 0引用数: 0
h-index: 0
机构:
China Nucl Power Engn Co, Beijing 100840, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
机构:
Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, B John Garrick Inst Risk Sci, Los Angeles, CA 90095 USAUniv Fed Pernambuco UFPE, Ctr Risk Anal Reliabil Engn & Environm Modeling C, BR-50740550 Recife, PE, Brazil