Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model

被引:38
|
作者
Shang, Chuan [1 ,2 ]
Gao, Junwei [1 ,2 ]
Liu, Huabo [1 ,2 ]
Liu, Fuzheng [1 ,2 ]
机构
[1] Qingdao Univ, Coll Automat, Qingdao 266071, Peoples R China
[2] Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R China
关键词
Load modeling; Load forecasting; Predictive models; Prediction algorithms; Kernel; Data models; Clustering algorithms; Short-term load forecasting; Pearson correlation coefficient; PSO-KFCM; cosine similarity; CNN; LSTM;
D O I
10.1109/ACCESS.2021.3067043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Short-term load forecasting (STLF) with excellent precision and prominent efficiency plays a significant role in the stable operation of power grid and the improvement of economic benefits. In this paper, a novel model based on data mining and deep learning is proposed. Firstly, the preprocessing of data includes normalization of historical load, and fuzzification of influencing factors (meteorological factors, date types and economy) based on Pearson correlation coefficient (PCC). Secondly, kernel fuzzy c-means (KFCM) modified by particle swarm optimization (PSO-KFCM) algorithm clusters the daily load curve. In the clustering experiments, the within-cluster sum of squared error (SSE) index is presented to determine the number of clusters and the clustering validity has a 31.9% enhancement compared with the traditional FCM algorithm. Thirdly, the cosine similarity establishes the resemblance between the prediction date and each cluster, and the similar cluster is determined according to the principle of maximum similarity. Finally, a multivariate and multi-step hybrid model MMCNN-LSTM based on convolution neural network (CNN) and long short-term memory (LSTM) neural network is proposed to forecast the load in following 24 hours, in which similar cluster data is applied to training set. To demonstrate the effectiveness of proposed integrated technique, the accuracy has been verified in three predictive experiments. The fruitful results indicated that the average mean absolute percent error (MAPE) in the entire test set was only 1.34%, a 3.02% reduction compared to a single LSTM.
引用
收藏
页码:50344 / 50357
页数:14
相关论文
共 50 条
  • [31] Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid With Clustering and Consumption Pattern Recognition
    Syed, Dabeeruddin
    Abu-Rub, Haitham
    Ghrayeb, Ali
    Refaat, Shady S.
    Houchati, Mahdi
    Bouhali, Othmane
    Banales, Santiago
    IEEE ACCESS, 2021, 9 : 54992 - 55008
  • [32] Short-term power load forecasting based on DQN-LSTM
    Guo, Xifeng
    Jiang, Yuxin
    Li, Lingyan
    Fu, Guojiang
    Yao, Shu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 855 - 860
  • [33] Load Forecasting Based on Short-term Correlation Clustering
    Tao, Shun
    Li, Yongtong
    Xiao, Xiangning
    Yao, Liting
    2017 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT-ASIA), 2017, : 583 - 589
  • [34] Short-Term Load Forecasting Based on Data Decomposition and Dynamic Correlation
    Wang, Min
    Zuo, Fanglin
    Wu, Chao
    Yu, Zixuan
    Chen, Yuan
    Wang, Huilin
    IEEE ACCESS, 2023, 11 : 107297 - 107308
  • [35] A Short-Term Load Demand Forecasting based on the Method of LSTM
    Bodur, Idris
    Celik, Emre
    Ozturk, Nihat
    10TH IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2021), 2021, : 171 - 174
  • [36] Short-Term Industrial Load Forecasting Based on Ensemble Hidden Markov Model
    Wang, Yuanyuan
    Kong, Yang
    Tang, Xiafei
    Chen, Xiaoqiao
    Xu, Yao
    Chen, Jun
    Sun, Shanfeng
    Guo, Yongsheng
    Chen, Yuhao
    IEEE ACCESS, 2020, 8 : 160858 - 160870
  • [37] Historical load curve correction for short-term load forecasting
    Yang, Jingfei
    Stenzel, Juergen
    IPEC: 2005 INTERNATIONAL POWER ENGINEERING CONFERENCE, VOLS 1 AND 2, 2005, : 35 - 40
  • [38] Short-term Load Forecasting with LSTM based Ensemble Learning
    Wang, Lingxiao
    Mao, Shiwen
    Wilamowski, Bogdan
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 793 - 800
  • [39] Enhancing Short-Term Electric Load Forecasting for Households Using Quantile LSTM and Clustering-Based Probabilistic Approach
    Masood, Zaki
    Gantassi, Rahma
    Choi, Yonghoon
    IEEE ACCESS, 2024, 12 : 77257 - 77268
  • [40] Improving Model Generalization for Short-Term Customer Load Forecasting With Causal Inference
    Wang, Zhenyi
    Zhang, Hongcai
    Yang, Ruixiong
    Chen, Yong
    IEEE TRANSACTIONS ON SMART GRID, 2025, 16 (01) : 424 - 436