Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model

被引:38
|
作者
Shang, Chuan [1 ,2 ]
Gao, Junwei [1 ,2 ]
Liu, Huabo [1 ,2 ]
Liu, Fuzheng [1 ,2 ]
机构
[1] Qingdao Univ, Coll Automat, Qingdao 266071, Peoples R China
[2] Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R China
关键词
Load modeling; Load forecasting; Predictive models; Prediction algorithms; Kernel; Data models; Clustering algorithms; Short-term load forecasting; Pearson correlation coefficient; PSO-KFCM; cosine similarity; CNN; LSTM;
D O I
10.1109/ACCESS.2021.3067043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Short-term load forecasting (STLF) with excellent precision and prominent efficiency plays a significant role in the stable operation of power grid and the improvement of economic benefits. In this paper, a novel model based on data mining and deep learning is proposed. Firstly, the preprocessing of data includes normalization of historical load, and fuzzification of influencing factors (meteorological factors, date types and economy) based on Pearson correlation coefficient (PCC). Secondly, kernel fuzzy c-means (KFCM) modified by particle swarm optimization (PSO-KFCM) algorithm clusters the daily load curve. In the clustering experiments, the within-cluster sum of squared error (SSE) index is presented to determine the number of clusters and the clustering validity has a 31.9% enhancement compared with the traditional FCM algorithm. Thirdly, the cosine similarity establishes the resemblance between the prediction date and each cluster, and the similar cluster is determined according to the principle of maximum similarity. Finally, a multivariate and multi-step hybrid model MMCNN-LSTM based on convolution neural network (CNN) and long short-term memory (LSTM) neural network is proposed to forecast the load in following 24 hours, in which similar cluster data is applied to training set. To demonstrate the effectiveness of proposed integrated technique, the accuracy has been verified in three predictive experiments. The fruitful results indicated that the average mean absolute percent error (MAPE) in the entire test set was only 1.34%, a 3.02% reduction compared to a single LSTM.
引用
收藏
页码:50344 / 50357
页数:14
相关论文
共 50 条
  • [1] Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting
    Alhussein, Musaed
    Aurangzeb, Khursheed
    Haider, Syed Irtaza
    IEEE ACCESS, 2020, 8 : 180544 - 180557
  • [2] Short-Term Electricity Load Forecasting Based on NeuralProphet and CNN-LSTM
    Lu, Shuai
    Bao, Taotao
    IEEE ACCESS, 2024, 12 : 76870 - 76879
  • [3] A CNN-LSTM Hybrid Model Based Short-term Power Load Forecasting
    Ren, Chang
    Jia, Li
    Wang, Zhangliang
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 182 - 186
  • [4] CNN-LSTM short-term load forecasting based on the K-Medoids clustering and grid method to extract load curve features
    Ji Y.
    Yan Y.
    He P.
    Liu X.
    Li C.
    Zhao C.
    Fan J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (18): : 81 - 93
  • [5] Short-term Load Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model
    Lu J.
    Zhang Q.
    Yang Z.
    Tu M.
    Lu J.
    Peng H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (08): : 131 - 137
  • [6] The Effect of Input Length on Prediction Accuracy in Short-Term Multi-Step Electricity Load Forecasting: A CNN-LSTM Approach
    Ozdemir, Seyda
    Demir, Yakup
    Yildirim, Ozal
    IEEE ACCESS, 2025, 13 : 28419 - 28432
  • [7] A Novel Temporal Feature Selection Based LSTM Model for Electrical Short-Term Load Forecasting
    Ijaz, Khalid
    Hussain, Zawar
    Ahmad, Jameel
    Ali, Syed Farooq
    Adnan, Muhammad
    Khosa, Ikramullah
    IEEE ACCESS, 2022, 10 : 82596 - 82613
  • [8] Short-Term Load Forecasting in Power System Using CNN-LSTM Neural Network
    Truong Hoang Bao Huy
    Dieu Ngoc Vo
    Khai Phuc Nguyen
    Viet Quoc Huynh
    Minh Quang Huynh
    Khoa Hoang Truong
    2023 ASIA MEETING ON ENVIRONMENT AND ELECTRICAL ENGINEERING, EEE-AM, 2023,
  • [9] Short-Term Load Forecasting Based on CNN and LSTM Deep Neural Networks
    Agga, First Ali
    Abbou, Second Ahmed
    El Houm, Yassine
    Labbadi, Moussa
    IFAC PAPERSONLINE, 2022, 55 (12): : 777 - 781
  • [10] Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model
    Kumshe, Umar Muhammad Mustapha
    Abdulhamid, Zakariya Muhammad
    Mala, Baba Ahmad
    Muazu, Tasiu
    Muhammad, Abdullahi Uwaisu
    Sangary, Ousmane
    Ba, Abdoul Fatakhou
    Tijjani, Sani
    Adam, Jibril Muhammad
    Ali, Mosaad Ali Hussein
    Bello, Aliyu Uthman
    Bala, Muhammad Muhammad
    WATER RESOURCES MANAGEMENT, 2024, 38 (15) : 5973 - 5989