Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis

被引:183
|
作者
Segar, Matthew W. [1 ]
Patel, Kershaw V. [1 ]
Ayers, Colby [1 ]
Basit, Mujeeb [1 ]
Tang, W. H. Wilson [2 ]
Willett, Duwayne [1 ]
Berry, Jarett [1 ]
Grodin, Justin L. [1 ]
Pandey, Ambarish [1 ]
机构
[1] Univ Texas Southwestern Med Ctr, Dept Internal Med, Div Cardiol, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
[2] Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH 44106 USA
基金
美国国家卫生研究院;
关键词
Heart failure with preserved ejection fraction; Phenomapping; Machine learning; Outcomes; SPIRONOLACTONE; PHENOTYPE; RISK; MORTALITY; TOPCAT;
D O I
10.1002/ejhf.1621
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim To identify distinct phenotypic subgroups in a highly-dimensional, mixed-data cohort of individuals with heart failure (HF) with preserved ejection fraction (HFpEF) using unsupervised clustering analysis. Methods and results The study included all Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) participants from the Americas (n = 1767). In the subset of participants with available echocardiographic data (derivation cohort, n = 654), we characterized three mutually exclusive phenogroups of HFpEF participants using penalized finite mixture model-based clustering analysis on 61 mixed-data phenotypic variables. Phenogroup 1 had higher burden of co-morbidities, natriuretic peptides, and abnormalities in left ventricular structure and function; phenogroup 2 had lower prevalence of cardiovascular and non-cardiac co-morbidities but higher burden of diastolic dysfunction; and phenogroup 3 had lower natriuretic peptide levels, intermediate co-morbidity burden, and the most favourable diastolic function profile. In adjusted Cox models, participants in phenogroup 1 (vs. phenogroup 3) had significantly higher risk for all adverse clinical events including the primary composite endpoint, all-cause mortality, and HF hospitalization. Phenogroup 2 (vs. phenogroup 3) was significantly associated with higher risk of HF hospitalization but a lower risk of atherosclerotic event (myocardial infarction, stroke, or cardiovascular death), and comparable risk of mortality. Similar patterns of association were also observed in the non-echocardiographic TOPCAT cohort (internal validation cohort, n = 1113) and an external cohort of patients with HFpEF [Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure with Preserved Ejection Fraction (RELAX) trial cohort, n = 198], with the highest risk of adverse outcome noted in phenogroup 1 participants. Conclusions Machine learning-based cluster analysis can identify phenogroups of patients with HFpEF with distinct clinical characteristics and long-term outcomes.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 50 条
  • [21] How do patients with heart failure with preserved ejection fraction die?
    Chan, Michelle M. Y.
    Lam, Carolyn S. P.
    EUROPEAN JOURNAL OF HEART FAILURE, 2013, 15 (06) : 604 - 613
  • [22] Prognostic impact of mineralocorticoid receptor antagonist in patients with heart failure with preserved ejection fraction
    Suzuki, Sho
    Motoki, Hirohiko
    Kanzaki, Yusuke
    Maruyama, Takuya
    Hashizume, Naoto
    Kozuka, Ayako
    Yahikozawa, Kumiko
    Kuwahara, Koichiro
    ESC HEART FAILURE, 2020, 7 (05): : 2752 - 2761
  • [23] Targeting efficacy of spironolactone in patients with heart failure with preserved ejection fraction: the TOPCAT study
    Zhou, Hui-min
    Zhan, Rong-jian
    Chen, Xuanyu
    Lin, Yi-fen
    Zhang, Shao-zhao
    Zheng, Huigan
    Wang, Xueqin
    Huang, Meng-ting
    Xu, Chao-guang
    Liao, Xin-xue
    Tian, Ting
    Zhuang, Xiao-dong
    ESC HEART FAILURE, 2023, 10 (01): : 322 - 333
  • [24] Machine Learning for Mortality Prediction in Patients With Heart Failure With Mildly Reduced Ejection Fraction
    Tian, Pengchao
    Liang, Lin
    Zhao, Xuemei
    Huang, Boping
    Feng, Jiayu
    Huang, Liyan
    Huang, Yan
    Zhai, Mei
    Zhou, Qiong
    Zhang, Jian
    Zhang, Yuhui
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2023, 12 (12):
  • [25] Profiling heart failure with preserved or mildly reduced ejection fraction by cluster analysis
    Vicent, Lourdes
    Rosillo, Nicolas
    Velez, Jorge
    Moreno, Guillermo
    Perez, Pablo
    Bernal, Jose Luis
    Seara, German
    Salguero-Bodes, Rafael
    Arribas, Fernando
    Bueno, Hector
    EUROPEAN HEART JOURNAL-QUALITY OF CARE AND CLINICAL OUTCOMES, 2024,
  • [26] Modes of death in patients with heart failure and preserved ejection fraction
    Aschauer, Stefan
    Zotter-Tufaro, Caroline
    Duca, Franz
    Kammerlander, Andreas
    Dalos, Daniel
    Mascherbauer, Julia
    Bonderman, Diana
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 228 : 422 - 426
  • [27] Comorbidity in patients with type 2 diabetes mellitus and heart failure with preserved ejection fraction. Cluster analysis of the RICA registry. Opportunities for improvement
    Arevalo Lorido, J. C.
    Carretero Gomez, J.
    Gomez Huelgas, R.
    Quiros Lopez, R.
    Davila Ramos, M. F.
    Serrado Iglesias, A.
    Ruiz Laiglesia, F.
    Gonzalez Franco, A.
    Cepeda Rodrigo, J. M.
    Montero-Perez-Barquero, M.
    REVISTA CLINICA ESPANOLA, 2020, 220 (07): : 409 - 416
  • [28] Baseline characteristics of patients with heart failure with preserved ejection fraction in the EMPEROR-Preserved trial
    Anker, Stefan D.
    Butler, Javed
    Filippatos, Gerasimos
    Shahzeb Khan, Muhammad
    Pedro Ferreira, Joao
    Bocchi, Edimar
    Bohm, Michael
    Pieter Brunner-La Rocca, Hans
    Choi, Dong-Ju
    Chopra, Vijay
    Chuquiure, Eduardo
    Giannetti, Nadia
    Esteban Gomez-Mesa, Juan
    Janssens, Stefan
    Januzzi, James L.
    Gonzalez-Juanatey, Jose R.
    Merkely, Bela
    Nicholls, Stephen J.
    Perrone, Sergio, V
    Pina, Ileana L.
    Ponikowski, Piotr
    Senni, Michele
    Seronde, Marie-France
    Sim, David
    Spinar, Jindrich
    Squire, Iain
    Taddei, Stefano
    Tsutsui, Hiroyuki
    Verma, Subodh
    Vinereanu, Dragos
    Zhang, Jian
    Jamal, Waheed
    Schnaidt, Sven
    Schnee, Janet M.
    Brueckmann, Martina
    Pocock, Stuart J.
    Zannad, Faiez
    Packer, Milton
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (12) : 2383 - 2392
  • [29] Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning
    Hedman, Asa K.
    Hage, Camilla
    Sharma, Anil
    Brosnan, Mary Julia
    Buckbinder, Leonard
    Gan, Li-Ming
    Shah, Sanjiv J.
    Linde, Cecilia M.
    Donal, Erwan
    Daubert, Jean-Claude
    Malarstig, Anders
    Ziemek, Daniel
    Lund, Lars
    HEART, 2020, 106 (05) : 342 - 349
  • [30] Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction
    Solomon, Scott D.
    Claggett, Brian
    Lewis, Eldrin F.
    Desai, Akshay
    Anand, Inder
    Sweitzer, Nancy K.
    O'Meara, Eileen
    Shah, Sanjiv J.
    McKinlay, Sonja
    Fleg, Jerome L.
    Sopko, George
    Pitt, Bertram
    Pfeffer, Marc A.
    EUROPEAN HEART JOURNAL, 2016, 37 (05) : 455 - 462