Statistically correlated multi-task learning for autonomous driving

被引:6
|
作者
Abbas, Waseem [1 ]
Khan, Muhammad Fakhir [1 ]
Taj, Murtaza [1 ]
Mahmood, Arif [2 ]
机构
[1] Lahore Univ Management Sci, Dept Comp Sci, Lahore, Pakistan
[2] Informat Technol Univ, Dept Comp Sci, Lahore, Pakistan
关键词
Multi-task learning; Autonomous driving; Deep learning;
D O I
10.1007/s00521-021-05941-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autonomous driving research is an emerging area in the machine learning domain. Most existing methods perform single-task learning, while multi-task learning (MTL) is more efficient due to the leverage of shared information between different tasks. However, MTL is challenging because different tasks may have different significance and varying ranges. In this work, we propose an end-to-end deep learning architecture for statistically correlated MTL using a single input image. Statistical correlation of the tasks is handled by including shared layers in the architecture. Later network separates into different branches to handle the difference in the behavior of each task. Training a multi-task model with varying ranges may converge the objective function only with larger values. To this end, we explore different normalization schemes and empirically observe that the inverse validation-loss weighted scheme has best performed. In addition to estimating steering angle, braking, and acceleration, we also estimate the number of lanes on the left and the right side of the vehicle. To the best of our knowledge, we are the first to propose an end-to-end deep learning architecture to estimate this type of lane information. The proposed approach is evaluated on four publicly available datasets including Comma.ai, Udacity, Berkeley Deep Drive, and Sully Chen. We also propose a synthetic dataset GTA-V for autonomous driving research. Our experiments demonstrate the superior performance of the proposed approach compared to the current state-of-the-art methods. The GTA-V dataset and the lane annotations on the four existing datasets will be made publicly available via
引用
收藏
页码:12921 / 12938
页数:18
相关论文
共 50 条
  • [1] Statistically correlated multi-task learning for autonomous driving
    Waseem Abbas
    Muhammad Fakhir Khan
    Murtaza Taj
    Arif Mahmood
    Neural Computing and Applications, 2021, 33 : 12921 - 12938
  • [2] Optimal Configuration of Multi-Task Learning for Autonomous Driving
    Jun, Woomin
    Son, Minjun
    Yoo, Jisang
    Lee, Sungjin
    SENSORS, 2023, 23 (24)
  • [3] Multi-task learning for dangerous object detection in autonomous driving
    Chen, Yaran
    Zhao, Dongbin
    Lv, Le
    Zhang, Qichao
    INFORMATION SCIENCES, 2018, 432 : 559 - 571
  • [4] Multi-Task Assisted Driving Policy Learning Method for Autonomous Driving
    Luo, Yutao
    Xue, Zhicheng
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2024, 52 (10): : 31 - 40
  • [5] Real-Time Multi-task Network for Autonomous Driving
    Dat, Vu Thanh
    Bao, Ngo Viet Hoai
    Hung, Phan Duy
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT I, 2022, 1613 : 207 - 218
  • [6] Scalable Parallel Task Scheduling for Autonomous Driving Using Multi-Task Deep Reinforcement Learning
    Qi, Qi
    Zhang, Lingxin
    Wang, Jingyu
    Sun, Haifeng
    Zhuang, Zirui
    Liao, Jianxin
    Yu, F. Richard
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 13861 - 13874
  • [7] Scalable Multi-Task Learning R-CNN for Object Detection in Autonomous Driving
    Rinchen, Sonam
    Vaidya, Binod
    Mouftah, Hussein T.
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 518 - 523
  • [8] A Decision Control Method for Autonomous Driving Based on Multi-Task Reinforcement Learning
    Cai, Yingfeng
    Yang, Shaoqing
    Wang, Hai
    Teng, Chenglong
    Chen, Long
    IEEE ACCESS, 2021, 9 (09): : 154553 - 154562
  • [9] Multi-Task Environmental Perception Methods for Autonomous Driving
    Liu, Ri
    Yang, Shubin
    Tang, Wansha
    Yuan, Jie
    Chan, Qiqing
    Yang, Yunchuan
    SENSORS, 2024, 24 (17)
  • [10] Fast Drivable Areas Estimation with Multi-Task Learning for Real-Time Autonomous Driving Assistant
    Lee, Dong-Gyu
    APPLIED SCIENCES-BASEL, 2021, 11 (22):