Efficient RNA isoform identification and quantification from RNA-Seq data with network flows

被引:49
|
作者
Bernard, Elsa [1 ,2 ,3 ]
Jacob, Laurent [4 ]
Mairal, Julien [5 ]
Vert, Jean-Philippe [1 ,2 ,3 ]
机构
[1] Mines ParisTech, Ctr Computat Biol, F-77300 Fontainebleau, France
[2] Inst Curie, F-75248 Paris, France
[3] INSERM, U900, F-75248 Paris, France
[4] Univ Lyon 1, INRA, CNRS, Lab Biometrie & Biol Evolut,UMR5558, Villeurbanne, France
[5] INRIA Grenoble Rhone Alpes, LEAR Project Team, F-38330 Montbonnot St Martin, France
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
ABUNDANCE ESTIMATION; TRANSCRIPTOME; EXPRESSION; SELECTION; ALGORITHM; DISCOVERY; GENOME; GRAPHS; LASSO;
D O I
10.1093/bioinformatics/btu317
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Several state-of-the-art methods for isoform identification and quantification are based on l(1)-regularized regression, such as the Lasso. However, explicitly listing the-possibly exponentially-large set of candidate transcripts is intractable for genes with many exons. For this reason, existing approaches using the l(1)-penalty are either restricted to genes with few exons or only run the regression algorithm on a small set of preselected isoforms. Results: We introduce a new technique called FlipFlop, which can efficiently tackle the sparse estimation problem on the full set of candidate isoforms by using network flow optimization. Our technique removes the need of a preselection step, leading to better isoform identification while keeping a low computational cost. Experiments with synthetic and real RNA-Seq data confirm that our approach is more accurate than alternative methods and one of the fastest available.
引用
收藏
页码:2447 / 2455
页数:9
相关论文
共 50 条
  • [41] Detection of generic differential RNA processing events from RNA-seq data
    Tran, Van Du T.
    Souiai, Oussema
    Romero-Barrios, Natali
    Crespi, Martin
    Gautheret, Daniel
    RNA BIOLOGY, 2016, 13 (01) : 59 - 67
  • [42] Highly efficient identification of thousands of microsatellite loci in the pearl oyster (Pinctada martensii) from RNA-Seq
    Guo, Yu-Song
    Wang, Xue-Ying
    Wang, Zhong-Duo
    Zhao, Xiao-Xia
    Wang, Qing-Heng
    Deng, Yue-Wen
    Du, Xiao-Dong
    BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2015, 61 : 149 - 155
  • [43] A community challenge to evaluate RNA-seq, fusion detection, and isoform quantification methods for cancer discovery
    Creason, Allison
    Haan, David
    Dang, Kristen
    Chiotti, Kami E.
    Inkman, Matthew
    Lamb, Andrew
    Yu, Thomas
    Hu, Yin
    Norman, Thea C.
    Buchanan, Alex
    van Baren, Marijke J.
    Spangler, Ryan
    Rollins, M. Rick
    Spellman, Paul T.
    Rozanov, Dmitri
    Zhang, Jin
    Maher, Christopher A.
    Caloian, Cristian
    Watson, John D.
    Uhrig, Sebastian
    Haas, Brian J.
    Jain, Miten
    Akeson, Mark
    Ahsen, Mehmet Eren
    Stolovitzky, Gustavo
    Guinney, Justin
    Boutros, Paul C.
    Stuart, Joshua M.
    Ellrott, Kyle
    CELL SYSTEMS, 2021, 12 (08) : 827 - +
  • [44] Influence of RNA extraction methods and library selection schemes on RNA-seq data
    Sultan, Marc
    Amstislavskiy, Vyacheslav
    Risch, Thomas
    Schuette, Moritz
    Doekel, Simon
    Ralser, Meryem
    Balzereit, Daniela
    Lehrach, Hans
    Yaspo, Marie-Laure
    BMC GENOMICS, 2014, 15
  • [45] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [46] A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data
    Zhang, L.
    Liu, X. J.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [47] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [48] Identification of gene signatures from RNA-seq data using Pareto-optimal cluster algorithm
    Mallik, Saurav
    Zhao, Zhongming
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [49] SQUID: transcriptomic structural variation detection from RNA-seq
    Ma, Cong
    Shao, Mingfu
    Kingsford, Carl
    GENOME BIOLOGY, 2018, 19
  • [50] Near-optimal probabilistic RNA-seq quantification
    Bray, Nicolas L.
    Pimentel, Harold
    Melsted, Pall
    Pachter, Lior
    NATURE BIOTECHNOLOGY, 2016, 34 (05) : 525 - 527