Self-Healing Poly(acrylic acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength

被引:229
|
作者
Gulyuz, Umit [1 ]
Okay, Oguz [1 ]
机构
[1] Istanbul Tech Univ, Dept Chem, TR-34469 Istanbul, Turkey
关键词
POLYACRYLIC-ACID; MIXED MICELLES; SCALING LAWS; TOUGH; TRANSITION; BROMIDE; PH; POLYELECTROLYTES; SURFACTANTS; CHEMISTRY;
D O I
10.1021/ma5015116
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A promising strategy to design synthetic hydrogels with the ability to self-heal is to substitute the covalently cross-linked polymer chains by supramolecular ones. Although supramolecular hydrogels generally exhibit rapid self-healing without the need for any stimulus, they suffer from low mechanical strength which prevents them from any stress-bearing applications. Here, we describe a novel way for the production of self-healing hydrogels with shape memory behavior of high tensile strength (0.7-1.7 MPa) and stretch at break (800-900%). Hydrophobically modified poly(acrylic acid) (PAAc) chains with cetyltrimethylammonium (CTA) counterions form the physical network of such hydrogels. They were prepared via micellar copolymerization of acrylic acid with 2 mol % stearyl methacrylate (C18) as the hydrophobic comonomer in an aqueous NaBr solution of cetyltrimethylammonium bromide (CTAB). Extraction of free CTAB micelles from the physical gels results in a drastic increase in their Young's moduli (from 8-30 to 180-600 kPa) and tensile strengths (from 0.1-0.2 to 0.7-1.7 MPa) due to the complex formation between PAAc and CTAB. Loading and unloading cycles conducted on hydrogels both at the state of preparation and at equilibrium in water show a significant hysteresis and good superposition of the successive loading curves, demonstrating damage done during loading is recoverable in nature. The hydrogel samples self-healed via heating and surfactant treatment of the damaged areas withstand up to 1.5 MPa stresses and rupture at a stretch of 600%. Because of the drastic change in the elastic modulus of PAAc hydrogels with a change in temperature, they also exhibit shape memory properties with a recovery ratio of 100%.
引用
收藏
页码:6889 / 6899
页数:11
相关论文
共 50 条
  • [1] Multiamine-induced self-healing poly (Acrylic Acid) hydrogels with shape memory behavior
    Lan, Jun
    Ni, Xiuquan
    Zhao, Chuanzhuang
    Liu, Qiao
    Chen, Chongyi
    POLYMER JOURNAL, 2018, 50 (07) : 485 - 493
  • [2] Self-Healing Poly(acrylic acid) Hydrogels: Effect of Surfactant
    Gulyuz, Umit
    Okay, Oguz
    MACROMOLECULAR SYMPOSIA, 2015, 358 (01) : 232 - 238
  • [3] Self-healing poly(N-isopropylacrylamide) hydrogels
    Gulyuz, Umit
    Okay, Oguz
    EUROPEAN POLYMER JOURNAL, 2015, 72 : 12 - 22
  • [4] 4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid) with Shape-Memory and Self-Healing Abilities
    Abdullah, Turdimuhammad
    Okay, Oguz
    ACS APPLIED BIO MATERIALS, 2023, 6 (02) : 703 - 711
  • [5] Melt-Processable Shape-Memory Hydrogels with Self-Healing Ability of High Mechanical Strength
    Bilici, Cigdem
    Can, Volkan
    Nochel, Ulrich
    Behl, Marc
    Lendlein, Andreas
    Okay, Oguz
    MACROMOLECULES, 2016, 49 (19) : 7442 - 7449
  • [6] Highly stretchable and self-healing hydrogels based on poly(acrylic acid) and functional POSS
    Yang, Liu-qing
    Lu, Lu
    Zhang, Chao-wen
    Zhou, Chang-ren
    CHINESE JOURNAL OF POLYMER SCIENCE, 2016, 34 (02) : 185 - 194
  • [7] Self-Healing of Poly(vinyl Alcohol)/Poly(acrylic Acid)-Polytetrahydrofuran-Poly(acrylic Acid) Blend Boosted via Shape Memory
    Ren, Yajun
    Song, Xiaofeng
    Chen, Youhua
    Xin, Wen
    Zhu, Chuanming
    Huang, Yuan
    Tian, Na
    Huang, Yuling
    LANGMUIR, 2023, 39 (41) : 14811 - 14821
  • [8] Highly stretchable and self-healing hydrogels based on poly(acrylic acid) and functional POSS
    Liu-qing Yang
    Lu Lu
    Chao-wen Zhang
    Chang-ren Zhou
    Chinese Journal of Polymer Science, 2016, 34 : 185 - 194
  • [9] Highly Stretchable and Self-healing Hydrogels Based on Poly(acrylic acid) and Functional POSS
    Liu-qing Yang
    鲁路
    Chao-wen Zhang
    周长忍
    Chinese Journal of Polymer Science, 2016, 34 (02) : 185 - 194
  • [10] High stretchable and self-healing nanocellulose-poly(acrylic acid) composite hydrogels for sustainable CO2 shutoff
    Liu, Ziteng
    Wei, Peng
    Qi, Ying
    Huang, Xueli
    Xie, Yahong
    CARBOHYDRATE POLYMERS, 2023, 311