Fluorescence excitation/emission matrices as a tool to monitor the removal of organic micropollutants from wastewater effluents by adsorption onto activated carbon

被引:31
作者
Guillossou, Ronan [1 ]
Le Roux, Julien [1 ]
Goffin, Angelique [1 ]
Mailler, Romain [2 ]
Varrault, Gilles [1 ]
Vulliet, Emmanuelle [3 ]
Morlay, Catherine [4 ]
Nauleau, Fabrice [5 ]
Guerin, Sabrina [2 ]
Rocher, Vincent [2 ]
Gasperi, Johnny [1 ,6 ]
机构
[1] Univ Paris Est Creteil, Ecole Ponts ParisTech, Lab Eau Environm & Syst Urbains, Creteil, France
[2] Direct Innovat, Serv Publ Assainissement Francilien SIAAP, Colombes, France
[3] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Inst Sci Analyt,UMR 5280, Villeurbanne, France
[4] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Natl Sci Appl Lyon, CNRS,MATEIS,UMR 5510, Villeurbanne, France
[5] Saur, Direct Rech & Dev, Maurepas, France
[6] Univ Gustave Eiffel, GERS, LEE, IFSTTAR, F-44344 Bouguenais, France
关键词
Wastewater advanced treatment; Activated carbon; Organic micropollutants; Fluorescence EEM; PARAFAC; 3-DIMENSIONAL EXCITATION; COMPOUND ATTENUATION; TREATMENT PLANTS; MATTER; CONTAMINANTS; SPECTROSCOPY; PERFORMANCE; OXIDATION; PHARMACEUTICALS; POLLUTANTS;
D O I
10.1016/j.watres.2020.116749
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Monitoring the removal of organic micropollutants (OMPs) in advanced wastewater treatment facilities requires expensive and time-consuming analytical methods that cannot be installed online. Spectroscopic techniques such as fluorescence excitation/emission spectroscopy were demonstrated to offer the potential for monitoring OMPs removal in conventional wastewater treatment plants or ozonation pilots but their application to activated carbon (AC) adsorption processes was only investigated at lab scale and not in real treatment facilities. In this study, indexes from fluorescence emission/excitation matrices (EEMs) were used to find correlations with the removal of 28 OMPs from a large-scale AC pilot in fluidized bed employed for wastewater advanced treatment, as well as from batch experiments. Differences in OMPs removal could be observed depending on the operational conditions (i.e. pilot or batch experiments, contact time, type of AC) and the physico-chemical properties of the molecules. 7 PARAFAC components were derived from the fluorescence EEMs of 60 samples obtained before and after adsorption. Positive correlations were obtained between the removal of fluorescence indexes and most OMPs, and correlation coefficients were much higher than the ones obtained with UV254, confirming the interesting potential of fluorescence spectroscopy to accurately monitor adsorption performances at the industrial scale. The highest correlation coefficients were obtained for OMPs having the best removals while the ones that were refractory to adsorption, as well as to interactions with DOM, exhibited weak correlations. These results suggest that interactions between OMPs and fluorescing DOM and their subsequent co-adsorption onto AC were at the origin of the correlations found. Lower correlations were also found for the most biodegradable OMPs, which indicated that the occurrence of biological effects could make the monitoring of these compounds more challenging. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 61 条
[1]   Comparison of the natural fluorescence distribution among size fractions of terrestrial fulvic and humic acids and aquatic natural organic matter [J].
Alberts, JJ ;
Takács, M .
ORGANIC GEOCHEMISTRY, 2004, 35 (10) :1141-1149
[2]  
[Anonymous], 2007, R LANG ENV STAT COMP
[3]   Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates [J].
Anumol, Tarun ;
Sgroi, Massimiliano ;
Park, Minkyu ;
Roccaro, Paolo ;
Snyder, Shane A. .
WATER RESEARCH, 2015, 76 :76-87
[4]   Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes [J].
Ben, Weiwei ;
Zhu, Bing ;
Yuan, Xiangjuan ;
Zhang, Yu ;
Yang, Min ;
Qiang, Zhimin .
WATER RESEARCH, 2018, 130 :38-46
[5]   Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies [J].
Benstoem, Frank ;
Nahrstedt, Andreas ;
Boehler, Marc ;
Knopp, Gregor ;
Montag, David ;
Siegrist, Hansruedi ;
Pinnekamp, Johannes .
CHEMOSPHERE, 2017, 185 :105-118
[6]   Evaluation of a full-scale wastewater, treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products [J].
Bourgin, Marc ;
Beck, Birgit ;
Boehler, Marc ;
Borowska, Ewa ;
Fleiner, Julian ;
Salhi, Elisabeth ;
Teichler, Rebekka ;
von Gunten, Urs ;
Siegrist, Hansruedi ;
McArdell, Christa S. .
WATER RESEARCH, 2018, 129 :486-498
[7]   Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon [J].
Caique Alves, Thiago ;
Cabrera-Codony, Alba ;
Barcelo, Damia ;
Rodriguez-Mozaz, Sara ;
Pinheiro, Adilson ;
Gonzalez-Olmos, Rafael .
WATER RESEARCH, 2018, 144 :402-412
[8]   Fluorescence spectroscopy for wastewater monitoring: A review [J].
Carstea, Elfrida M. ;
Bridgeman, John ;
Baker, Andy ;
Reynolds, Darren M. .
WATER RESEARCH, 2016, 95 :205-219
[9]   Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS [J].
Caupos, Emilie ;
Touffet, Arnaud ;
Mazellier, Patrick ;
Croue, Jean-Philippe .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (06) :4201-4212
[10]   Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter [J].
Chen, W ;
Westerhoff, P ;
Leenheer, JA ;
Booksh, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (24) :5701-5710