Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq

被引:313
|
作者
Karaayvaz, Mihriban [1 ,2 ]
Cristea, Simona [3 ,4 ,5 ]
Gillespie, Shawn M. [1 ,2 ,6 ]
Patel, Anoop P. [2 ,7 ]
Mylvaganam, Ravindra [1 ,2 ,6 ]
Luo, Christina C. [1 ,2 ,6 ]
Specht, Michelle C. [2 ,8 ]
Bernstein, Bradley E. [1 ,2 ,6 ,9 ,10 ]
Michor, Franziska [3 ,4 ,5 ,9 ,10 ,11 ]
Ellisen, Leif W. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Ctr Canc Res, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA
[5] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[6] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
[7] Massachusetts Gen Hosp, Dept Neurosurg, Boston, MA 02114 USA
[8] Massachusetts Gen Hosp, Dept Surg Oncol, Boston, MA 02114 USA
[9] Broad Inst Harvard & MIT, Cambridge, MA 02139 USA
[10] Ludwig Ctr Harvard, Boston, MA 02215 USA
[11] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA 02115 USA
基金
瑞士国家科学基金会;
关键词
NEGATIVE BREAST-CANCER; TUMOR-INFILTRATING LYMPHOCYTES; STEM-CELLS; EXPRESSION; EVOLUTION; GLYCOSPHINGOLIPIDS; PATTERNS; SURVIVAL;
D O I
10.1038/s41467-018-06052-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by extensive intratumoral heterogeneity. To investigate the underlying biology, we conducted single-cell RNA-sequencing (scRNA-seq) of >1500 cells from six primary TNBC. Here, we show that intercellular heterogeneity of gene expression programs within each tumor is variable and largely correlates with clonality of inferred genomic copy number changes, suggesting that genotype drives the gene expression phenotype of individual subpopulations. Clustering of gene expression profiles identified distinct subgroups of malignant cells shared by multiple tumors, including a single subpopulation associated with multiple signatures of treatment resistance and metastasis, and characterized functionally by activation of glycosphingolipid metabolism and associated innate immunity pathways. A novel signature defining this subpopulation predicts long-term outcomes for TNBC patients in a large cohort. Collectively, this analysis reveals the functional heterogeneity and its association with genomic evolution in TNBC, and uncovers unanticipated biological principles dictating poor outcomes in this disease.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Single-cell RNA-seq analysis of testicular somatic cell development in pigs
    Zhang, Lingkai
    Guo, Ming
    Liu, Zidong
    Liu, Ruifang
    Zheng, Yi
    Yu, Taiyong
    Lv, Yinghua
    Lu, Hongzhao
    Zeng, Wenxian
    Zhang, Tao
    Pan, Chuanying
    JOURNAL OF GENETICS AND GENOMICS, 2022, 49 (11) : 1016 - 1028
  • [42] A multiplex single-cell RNA-Seq pharmacotranscriptomics pipeline for drug discovery
    Dini, Alice
    Barker, Harlan
    Piki, Emilia
    Sharma, Subodh
    Raivola, Juuli
    Murumagi, Astrid
    Ungureanu, Daniela
    NATURE CHEMICAL BIOLOGY, 2025, 21 (03) : 432 - 442
  • [43] Single-cell RNA-seq mapping of chicken peripheral blood leukocytes
    Maxwell, Matilda
    Soederlund, Robert
    Haertle, Sonja
    Wattrang, Eva
    BMC GENOMICS, 2024, 25 (01)
  • [44] Single-Cell RNA-Seq of Bone Marrow Cells in Aplastic Anemia
    Tonglin Hu
    Yanna Zhao
    Xiaoling Yu
    Ruilan Gao
    Liming Yin
    FRONTIERS IN GENETICS, 2022, 12
  • [45] Identification of innate lymphoid cells in single-cell RNA-Seq data
    Suffiotti, Madeleine
    Carmona, Santiago J.
    Jandus, Camilla
    Gfeller, David
    IMMUNOGENETICS, 2017, 69 (07) : 439 - 450
  • [46] scphaser: haplotype inference using single-cell RNA-seq data
    Edsgard, Daniel
    Reinius, Bjorn
    Sandberg, Rickard
    BIOINFORMATICS, 2016, 32 (19) : 3038 - 3040
  • [47] DSAVE: Detection of misclassified cells in single-cell RNA-Seq data
    Gustafsson, Johan
    Robinson, Jonathan
    Inda-Diaz, Juan S.
    Bjornson, Elias
    Jornsten, Rebecka
    Nielsen, Jens
    PLOS ONE, 2020, 15 (12):
  • [48] Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
    Lytal, Nicholas
    Ran, Di
    An, Lingling
    FRONTIERS IN GENETICS, 2020, 11
  • [49] Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    Tirosh, Itay
    Izar, Benjamin
    Prakadan, Sanjay M.
    Wadsworth, Marc H., II
    Treacy, Daniel
    Trombetta, John J.
    Rotem, Asaf
    Rodman, Christopher
    Lian, Christine
    Murphy, George
    Fallahi-Sichani, Mohammad
    Dutton-Regester, Ken
    Lin, Jia-Ren
    Cohen, Ofir
    Shah, Parin
    Lu, Diana
    Genshaft, Alex S.
    Hughes, Travis K.
    Ziegler, Carly G. K.
    Kazer, Samuel W.
    Gaillard, Aleth
    Kolb, Kellie E.
    Villani, Alexandra-Chloe
    Johannessen, Cory M.
    Andreev, Aleksandr Y.
    Van Allen, Eliezer M.
    Bertagnolli, Monica
    Sorger, Peter K.
    Sullivan, Ryan J.
    Flaherty, Keith T.
    Frederick, Dennie T.
    Jane-Valbuena, Judit
    Yoon, Charles H.
    Rozenblatt-Rosen, Orit
    Shalek, Alex K.
    Regev, Aviv
    Garraway, Levi A.
    SCIENCE, 2016, 352 (6282) : 189 - 196
  • [50] A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages
    Kimmerling, Robert J.
    Szeto, Gregory Lee
    Li, Jennifer W.
    Genshaft, Alex S.
    Kazer, Samuel W.
    Payer, Kristofor R.
    Borrajo, Jacob de Riba
    Blainey, Paul C.
    Irvine, Darrell J.
    Shalek, Alex K.
    Manalis, Scott R.
    NATURE COMMUNICATIONS, 2016, 7