Online optimization for variable selection in data streams

被引:7
|
作者
Anagnostopoulos, Christoforos [1 ]
Tasoulis, Dimitris [1 ]
Hand, David J. [1 ]
Adams, Niall M.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
来源
ECAI 2008, PROCEEDINGS | 2008年 / 178卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.3233/978-1-58603-891-5-132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable selection for regression is a classical statistical problem, motivated by concerns that too many covariates invite overfitting. Existing approaches notably include a class of convex optimisation techniques, such as the Lasso algorithm. Such techniques are invariably reliant on assumptions that are unrealistic in streaming contexts, namely that the data is available off-line and the correlation structure is static. In this paper, we relax both these constraints, proposing for the first time an online implementation of the Lasso algorithm with exponential forgetting. We also optimise the model dimension and the speed of forgetting in an online manner, resulting in a fully automatic scheme. In simulations our scheme improves on recursive least squares in dynamic environments, while also featuring model discovery and changepoint detection capabilities.
引用
收藏
页码:132 / +
页数:2
相关论文
共 50 条
  • [41] Online correlation analysis for multiple dimensions data streams
    College of Computer Science and Engineering, Southeast University, Nanjing 210096, China
    不详
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2006, 43 (10): : 1744 - 1750
  • [42] Dynamic adaptation of online ensembles for drifting data streams
    Olorunnimbe, M. Kehinde
    Viktor, Herna L.
    Paquet, Eric
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2018, 50 (02) : 291 - 313
  • [43] On indexing sliding windows over online data streams
    Golab, L
    Garg, S
    Özsu, MT
    ADVANCES IN DATABASE TECHNOLOGY - EDBT 2004, PROCEEDINGS, 2004, 2992 : 712 - 729
  • [44] A New hvolving Clustering Algorithm for Online Data Streams
    Bezerra, Clamber Gomes
    Jales Costa, Bruno Sielly
    Guedes, Luiz Affonso
    Angelov, Plamen Parvanov
    PROCEEDINGS OF THE 2016 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2016, : 162 - 168
  • [45] Adaptive online incremental learning for evolving data streams
    Zhang, Si -si
    Liu, Jian-wei
    Zuo, Xin
    APPLIED SOFT COMPUTING, 2021, 105
  • [46] Online Temporal Reasoning For Event And Data Streams Processing
    Poli, Jean-Philippe
    Boudet, Laurence
    Mercier, David
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2257 - 2264
  • [47] Online Learning for Data Streams With Incomplete Features and Labels
    You, Dianlong
    Yan, Huigui
    Xiao, Jiawei
    Chen, Zhen
    Wu, Di
    Shen, Limin
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4820 - 4834
  • [48] Online Detection of Patterns in Semantic Trajectory Data Streams
    Roganovic, Milos B.
    Stojanovic, Dragan H.
    2013 11TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS IN MODERN SATELLITE, CABLE AND BROADCASTING SERVICES (TELSIKS), VOLS 1 AND 2, 2013, : 575 - 578
  • [49] Online Learning From Incomplete and Imbalanced Data Streams
    You, Dianlong
    Xiao, Jiawei
    Wang, Yang
    Yan, Huigui
    Wu, Di
    Chen, Zhen
    Shen, Limin
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10650 - 10665
  • [50] Online Anomaly Detection over Big Data Streams
    Rettig, Laura
    Khayati, Mourad
    Cudre-Mauroux, Philippe
    Piorkowski, Michal
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1113 - 1122