Decoding the dynamic H3K9cr landscapes during neural commitment of P19 embryonal carcinoma cells

被引:2
作者
Dai, Shang-Kun [1 ]
Hao, Ruo-Bing [1 ]
Shen, Fei [1 ]
机构
[1] Shandong Univ Technol, Sch Life Sci & Med, Zibo 255049, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Epigenetics; Histone crotonylation; Neural commitment; Gene expression; HISTONE CROTONYLATION; DIFFERENTIATION; TRANSCRIPTION; COA; ACETYLATION; GENERATION; PACKAGE;
D O I
10.1016/j.bbrc.2022.05.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histone lysine crotonylation (Kcr) is a novel hydrophobic histone acylation modification, and we recently report its crucial roles in neural differentiation. However, it is still unclear how histone Kcr involve in early neural commitment. Here, we systematically investigate the H3K9cr landscapes during neuroectodermal differentiation of pluripotent P19 embryonal carcinoma cells (ECCs). We reveal that the genome-wide changes in H3K9cr favor neural fate specification, and identify potential co-factors binding H3K9cr. We also uncover that H3K9cr collaborates with H3K9ac to regulate gene expression changes. Our results provide novel insights into the epigenetic mechanisms underlying neural commitment. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 35 条
  • [1] The molecular hallmarks of epigenetic control
    Allis, C. David
    Jenuwein, Thomas
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (08) : 487 - 500
  • [2] The Taf14 YEATS domain is a reader of histone crotonylation
    Andrews, Forest H.
    Shinsky, Stephen A.
    Shanle, Erin K.
    Bridgers, Joseph B.
    Gest, Anneliese
    Tsun, Ian K.
    Krajewski, Krzysztof
    Shi, Xiaobing
    Strahl, Brian D.
    Kutateladze, Tatiana G.
    [J]. NATURE CHEMICAL BIOLOGY, 2016, 12 (06) : 396 - U33
  • [3] Dai S.K., 2021, BIORXIV, DOI [10.1101/2021.05.21.444394, DOI 10.1101/2021.05.21.444394]
  • [4] Histone crotonylation regulates neural stem cell fate decisions by activating bivalent promoters
    Dai, Shang-Kun
    Liu, Pei-Pei
    Du, Hong-Zhen
    Liu, Xiao
    Xu, Ya-Jie
    Liu, Cong
    Wang, Ying-Ying
    Teng, Zhao-Qian
    Liu, Chang-Mei
    [J]. EMBO REPORTS, 2021, 22 (10)
  • [5] Dai ZW, 2020, NAT REV GENET, V21, P737, DOI 10.1038/s41576-020-0270-8
  • [6] Histone crotonylation in neurobiology: to be or not to be?
    Deng, Cechuan
    Qu, Jia-Hua
    Kim, InKyeom
    Tang, Xiaoqiang
    [J]. CHINESE MEDICAL JOURNAL, 2022, 135 (09) : 1036 - 1038
  • [7] Histone crotonylation promotes mesoendodermal commitment of human embryonic stem cells
    Fang, Yi
    Xu, Xiaojiang
    Ding, Jun
    Yang, Lu
    Doan, Mary T.
    Karmaus, Peer W. F.
    Snyder, Nathaniel W.
    Zhao, Yingming
    Li, Jian-Liang
    Li, Xiaoling
    [J]. CELL STEM CELL, 2021, 28 (04) : 748 - +
  • [8] Identifying ChIP-seq enrichment using MACS
    Feng, Jianxing
    Liu, Tao
    Qin, Bo
    Zhang, Yong
    Liu, Xiaole Shirley
    [J]. NATURE PROTOCOLS, 2012, 7 (09) : 1728 - 1740
  • [9] Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities
    Heinz, Sven
    Benner, Christopher
    Spann, Nathanael
    Bertolino, Eric
    Lin, Yin C.
    Laslo, Peter
    Cheng, Jason X.
    Murre, Cornelis
    Singh, Harinder
    Glass, Christopher K.
    [J]. MOLECULAR CELL, 2010, 38 (04) : 576 - 589
  • [10] HIV latency is reversed by ACSS2-driven histone crotonylation
    Jiang, Guochun
    Don Nguyen
    Archin, Nancie M.
    Yukl, Steven A.
    Mendez-Lagares, Gema
    Tang, Yuyang
    Elsheikh, Maher M.
    Thompson, George R., III
    Hartigan-O'Connor, Dennis J.
    Margolis, David M.
    Wong, Joseph K.
    Dandekar, Satya
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2018, 128 (03) : 1190 - 1198