Estimating surface normals in noisy point cloud data

被引:387
|
作者
Mitra, NJ [1 ]
Nguyen, A [1 ]
Guibas, L [1 ]
机构
[1] Stanford Graph Lab, James H Clark Ctr, Stanford, CA 94305 USA
关键词
normal estimation; noisy point cloud data; Eigen analysis; neighborhood size estimation;
D O I
10.1142/S0218195904001470
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe and analyze a method based on local least square fitting for estimating the normals at all sample points of a point cloud data (PCD) set, in the presence of noise. We study the effects of neighborhood size, curvature, sampling density, and noise on the normal estimation when the PCD is sampled from a smooth curve in R-2 or a smooth surface in R-3, and noise is added. The analysis allows us to find the optimal neighborhood size using other local information from the PCD. Experimental results are also provided.
引用
收藏
页码:261 / 276
页数:16
相关论文
共 50 条
  • [41] A Nonparametric Approach for Noisy Point Data Preprocessing
    Xi, Yongjian
    Duan, Ye
    Zhao, Hongkai
    2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 217 - +
  • [42] Estimating Effective Leaf Area Index of Winter Wheat Based on UAV Point Cloud Data
    Yang, Jie
    Xing, Minfeng
    Tan, Qiyun
    Shang, Jiali
    Song, Yang
    Ni, Xiliang
    Wang, Jinfei
    Xu, Min
    DRONES, 2023, 7 (05)
  • [43] Estimating the predictability time of noisy chaotic dynamics from point sequences
    Ya. Kh. Mohammad
    O. N. Pavlova
    A. N. Pavlov
    Technical Physics Letters, 2017, 43 : 107 - 109
  • [44] Estimating the predictability time of noisy chaotic dynamics from point sequences
    Mohammad, Ya. Kh.
    Pavlova, O. N.
    Pavlov, A. N.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (01) : 107 - 109
  • [45] Tripod Operators for Efficient Search of Point Cloud Data for Known Surface Shapes
    Pipitone, Frank
    Gilbreath, Charmaine
    Bonanno, David
    ACTIVE AND PASSIVE SIGNATURES III, 2012, 8382
  • [46] Obstacle Detection of Unmanned Surface Vehicle Based on Lidar Point Cloud Data
    Deng, Lihui
    Guo, Tingting
    Wang, Hongjian
    Chi, Zhikang
    Wu, Zhiqiang
    Yuan, Rubin
    2022 OCEANS HAMPTON ROADS, 2022,
  • [47] Development of a validation technique for road surface profile applicable to point cloud data
    Tomiyama, Kazuya
    Yamaguchi, Yuki
    Moriishi, Kazushi
    Kotani, Yuki
    JOURNAL OF ROAD ENGINEERING, 2022, 2 (02) : 114 - 123
  • [48] Rural Road Surface Extraction Using Mobile LiDAR Point Cloud Data
    Manohar Yadav
    Ajai Kumar Singh
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 531 - 538
  • [49] Analyzing Nonparametric Part-to-Part Variation in Surface Point Cloud Data
    Bui, Anh Tuan
    Apley, Daniel W.
    TECHNOMETRICS, 2022, 64 (04) : 457 - 474
  • [50] IN-PROCESS SURFACE NORMAL ESTIMATION FOR RASTER SCANNED POINT CLOUD DATA
    Srivatsan, Vijay
    Katz, Reuven
    PROCEEDINGS OF THE 9TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS - 2008, VOL 1, 2009, : 109 - 116