Estimating surface normals in noisy point cloud data

被引:387
作者
Mitra, NJ [1 ]
Nguyen, A [1 ]
Guibas, L [1 ]
机构
[1] Stanford Graph Lab, James H Clark Ctr, Stanford, CA 94305 USA
关键词
normal estimation; noisy point cloud data; Eigen analysis; neighborhood size estimation;
D O I
10.1142/S0218195904001470
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe and analyze a method based on local least square fitting for estimating the normals at all sample points of a point cloud data (PCD) set, in the presence of noise. We study the effects of neighborhood size, curvature, sampling density, and noise on the normal estimation when the PCD is sampled from a smooth curve in R-2 or a smooth surface in R-3, and noise is added. The analysis allows us to find the optimal neighborhood size using other local information from the PCD. Experimental results are also provided.
引用
收藏
页码:261 / 276
页数:16
相关论文
共 20 条
[1]  
Alexander M, 2001, INTERNETWEEK, P21
[2]  
AMENTA A, 2000, P S COMP GEOM, P213
[3]  
Amenta N., 1998, Proceedings of the Fourteenth Annual Symposium on Computational Geometry, P39, DOI 10.1145/276884.276889
[4]  
AMENTA N, 1998, COMPUTER GRAPHICS, V32, P415
[5]  
[Anonymous], P 28 ANN C COMP GRAP, DOI DOI 10.1145/383259.383266
[6]   An optimal algorithm for approximate nearest neighbor searching in fixed dimensions [J].
Arya, S ;
Mount, DM ;
Netanyahu, NS ;
Silverman, R ;
Wu, AY .
JOURNAL OF THE ACM, 1998, 45 (06) :891-923
[7]  
Boissonnat J.-D., 2000, P 16 ANN S COMP GEOM, P223
[8]  
Dey TK, 2002, SIAM PROC S, P772
[9]   Bilateral mesh denoising [J].
Fleishman, S ;
Drori, I ;
Cohen-Or, D .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :950-953
[10]  
Funke S, 2002, SIAM PROC S, P781