Irrigation Mapping on Two Contrasted Climatic Contexts Using Sentinel-1 and Sentinel-2 Data

被引:17
|
作者
Elwan, Ehsan [1 ]
Le Page, Michel [1 ]
Jarlan, Lionel [1 ]
Baghdadi, Nicolas [2 ]
Brocca, Luca [3 ]
Modanesi, Sara [3 ]
Dari, Jacopo [3 ,4 ]
Quintana Segui, Pere [5 ]
Zribi, Mehrez [1 ]
机构
[1] Univ Toulouse, UPS, CNRS, CESBIO,CNES,INRAE,IRD, 18 Ave Edouard Belin, F-31401 Toulouse 9, France
[2] Univ Montpellier, AgroParisTech, CNRS, CIRAD,INRAE,TETIS, F-34090 Montpellier, France
[3] CNR, Natl Res Council, Res Inst Geohydrol Protect, Via Madonna Alta 126, I-06128 Perugia, Italy
[4] Univ Perugia, Dept Civil & Environm Engn, Via G Duranti 93, I-06125 Perugia, Italy
[5] Ramon Llull Univ, CSIC, Observ Ebre OE, Roquetes 43520, Spain
关键词
Sentinel-1; Sentinel-2; irrigation map; support vector machine; SOIL-MOISTURE; WATER; AGRICULTURE; LANDSAT; AREAS; MODIS;
D O I
10.3390/w14050804
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aims to propose an operational approach to map irrigated areas based on the synergy of Sentinel-1 (S1) and Sentinel-2 (S2) data. An application is proposed at two study sites in Europe-in Spain and in Italy-with two climatic contexts (semiarid and humid, respectively), with the objective of proving the essential role of multi-site training for a robust application of the proposed methodologies. Several classifiers are proposed to separate irrigated and rainfed areas. They are based on statistical variables from Sentinel-1 and Sentinel-2 time series data at the agricultural field scale, as well as on the contrasted behavior between the field scale and the 5 km surroundings. The support vector machine (SVM) classification approach was tested with different options to evaluate the robustness of the proposed methodologies. The optimal number of metrics found is five. These metrics illustrate the importance of optical/radar synergy and the consideration of multi-scale spatial information. The highest accuracy of the classifications, approximately equal to 85%, is based on training dataset with mixed reference fields from the two study sites. In addition, the accuracy is consistent at the two study sites. These results confirm the potential of the proposed approaches towards the most general use on sites with different climatic and agricultural contexts.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] MANGROVE SPECIES MAPPING USING SENTINEL-1 AND SENTINEL-2 DATA IN NORTH VIETNAM
    Tien Dat Pham
    Xia, Junshi
    Baier, Gerald
    Nga Nhu Le
    Yokoya, Naoto
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6102 - 6105
  • [2] MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES USING SENTINEL-2 AND SENTINEL-1 DATA
    Wang, Tiejun
    Luo, Yansha
    Sun, Yiwen
    Liu, Xinhui
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8381 - 8384
  • [3] An Application of Sentinel-1, Sentinel-2, and GNSS Data for Landslide Susceptibility Mapping
    Ghorbanzadeh, Omid
    Didehban, Khalil
    Rasouli, Hamid
    Kamran, Khalil Valizadeh
    Feizizadeh, Bakhtiar
    Blaschke, Thomas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [4] Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data
    Jamali, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Granger, Jean
    Mohammadimanesh, Fariba
    Salehi, Bahram
    GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1072 - 1089
  • [5] Mapping dead understorey Buxus hyrcana Pojark using Sentinel-2 and Sentinel-1 data
    Saba, Fatemeh
    Latifi, Hooman
    Zoej, Mohammad Javad Valadan
    Esmaili, Rohollah
    FORESTRY, 2023, 96 (02): : 228 - 248
  • [6] SENTINEL-1 AND SENTINEL-2 DATA FOR SOIL MOISTURE AND IRRIGATION MAPPING OVER SEMI-ARID REGION
    Bousbih, Safa
    Zribi, Mehrez
    El Hajj, Mohammad
    Baghdadi, Nicolas
    Chabaane, Zohra Lili
    Fanise, Pascal
    Boulet, Gilles
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7022 - 7025
  • [7] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [8] Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images
    Alireza Sharifi
    Shilan Felegari
    Aqil Tariq
    Arabian Journal of Geosciences, 2022, 15 (20)
  • [9] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Shrestha, Binita
    Ahmad, Sajjad
    Stephen, Haroon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (09)
  • [10] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3