An extended mixed-effects framework for meta-analysis

被引:186
作者
Sera, Francesco [1 ,2 ]
Armstrong, Benedict [1 ,2 ]
Blangiardo, Marta [3 ]
Gasparrini, Antonio [1 ,2 ]
机构
[1] London Sch Hyg & Trop Med, Dept Publ Hlth Environm & Soc, 15-17 Tavistock Pl, London WC1H 9SH, England
[2] London Sch Hyg & Trop Med, Ctr Stat Methodol, London, England
[3] Imperial Coll London, Dept Epidemiol & Biostat, London, England
基金
英国医学研究理事会;
关键词
dose-response; longitudinal; meta-analysis; mixed-effects models; GENERALIZED LEAST-SQUARES; MULTIVARIATE METAANALYSIS; MULTIPLE OUTCOMES; MULTILEVEL MODELS; REGRESSION-MODEL; TREND ESTIMATION; LINEAR-MODEL; 2-STAGE; INCONSISTENCY; CONSISTENCY;
D O I
10.1002/sim.8362
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Standard methods for meta-analysis are limited to pooling tasks in which a single effect size is estimated from a set of independent studies. However, this setting can be too restrictive for modern meta-analytical applications. In this contribution, we illustrate a general framework for meta-analysis based on linear mixed-effects models, where potentially complex patterns of effect sizes are modeled through an extended and flexible structure of fixed and random terms. This definition includes, as special cases, a variety of meta-analytical models that have been separately proposed in the literature, such as multivariate, network, multilevel, dose-response, and longitudinal meta-analysis and meta-regression. The availability of a unified framework for meta-analysis, complemented with the implementation in a freely available and fully documented software, will provide researchers with a flexible tool for addressing nonstandard pooling problems.
引用
收藏
页码:5429 / 5444
页数:16
相关论文
共 77 条
[11]  
Borenstein M., 2009, Introduction to meta-analysis, DOI DOI 10.1002/9780470743386
[12]   Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ [J].
Burke, Danielle L. ;
Ensor, Joie ;
Riley, Richard D. .
STATISTICS IN MEDICINE, 2017, 36 (05) :855-875
[13]   Alcohol intake and colorectal cancer: A pooled analysis of 8 cohort studies [J].
Cho, EY ;
Smith-Warner, SA ;
Ritz, J ;
van den Brandt, PA ;
Colditz, GA ;
Folsom, AR ;
Freudenheim, JL ;
Giovannucci, E ;
Goldbohm, RA ;
Graham, S ;
Holmberg, L ;
Kim, DH ;
Malila, N ;
Miller, AB ;
Pietinen, P ;
Rohan, TE ;
Sellers, TA ;
Speizer, FE ;
Willett, WC ;
Wolk, A ;
Hunter, DJ .
ANNALS OF INTERNAL MEDICINE, 2004, 140 (08) :603-613
[14]   EFFICACY OF BCG VACCINE IN THE PREVENTION OF TUBERCULOSIS - METAANALYSIS OF THE PUBLISHED LITERATURE [J].
COLDITZ, GA ;
BREWER, TF ;
BERKEY, CS ;
WILSON, ME ;
BURDICK, E ;
FINEBERG, HV ;
MOSTELLER, F .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1994, 271 (09) :698-702
[15]   The effects of modified school calendars on student achievement and on school and community attitudes [J].
Cooper, H ;
Valentine, JC ;
Charlton, K ;
Melson, A .
REVIEW OF EDUCATIONAL RESEARCH, 2003, 73 (01) :1-52
[16]   One-stage dose-response meta-analysis for aggregated data [J].
Crippa, Alessio ;
Discacciati, Andrea ;
Bottai, Matteo ;
Spiegelman, Donna ;
Orsini, Nicola .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (05) :1579-1596
[17]   Multivariate Dose-Response Meta-Analysis: The dosresmeta R Package [J].
Crippa, Alessio ;
Orsini, Nicola .
JOURNAL OF STATISTICAL SOFTWARE, 2016, 72 (CS1)
[18]   METAANALYSIS IN CLINICAL-TRIALS [J].
DERSIMONIAN, R ;
LAIRD, N .
CONTROLLED CLINICAL TRIALS, 1986, 7 (03) :177-188
[19]  
FINE HA, 1993, CANCER, V71, P2585, DOI 10.1002/1097-0142(19930415)71:8<2585::AID-CNCR2820710825>3.0.CO
[20]  
2-S