Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients

被引:27
作者
Liu, Hua [1 ]
Yuan, Hua [2 ]
Wang, Yongmei [3 ]
Huang, Weiwei [1 ]
Xue, Hui [4 ]
Zhang, Xiuying [2 ]
机构
[1] Jilin Univ, China Japan Union Hosp, Changchun 130000, Jilin, Peoples R China
[2] Jilin Univ, Sch Nursing, Changchun 130021, Jilin, Peoples R China
[3] Second Hosp Jilin Univ, Changchun 130000, Jilin, Peoples R China
[4] Jilin Univ, Coll Basic Med Sci, Dept Histol & Embryol, Changchun 130021, Peoples R China
基金
中国国家自然科学基金;
关键词
HOSPITALIZED MEDICAL PATIENTS; ACUTE PULMONARY-EMBOLISM; RISK-FACTORS; THROMBOSIS; EPIDEMIOLOGY; PROPHYLAXIS; PERFORMANCE; VALIDATION; MORTALITY; ADULTS;
D O I
10.1038/s41598-021-92287-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accumulating studies appear to suggest that the risk factors for venous thromboembolism (VTE) among young-middle-aged inpatients are different from those among elderly people. Therefore, the current prediction models for VTE are not applicable to young-middle-aged inpatients. The aim of this study was to develop and externally validate a new prediction model for young-middle-aged people using machine learning methods. The clinical data sets linked with 167 inpatients with deep venous thrombosis (DVT) and/or pulmonary embolism (PE) and 406 patients without DVT or PE were compared and analysed with machine learning techniques. Five algorithms, including logistic regression, decision tree, feed-forward neural network, support vector machine, and random forest, were used for training and preparing the models. The support vector machine model had the best performance, with AUC values of 0.806-0.944 for 95% CI, 59% sensitivity and 99% specificity, and an accuracy of 87%. Although different top predictors of adverse outcomes appeared in the different models, life-threatening illness, fibrinogen, RBCs, and PT appeared to be more consistently featured by the different models as top predictors of adverse outcomes. Clinical data sets of young and middle-aged inpatients can be used to accurately predict the risk of VTE with a support vector machine model.
引用
收藏
页数:12
相关论文
共 52 条
[21]   On overfitting, generalization, and randomly expanded training sets [J].
Karystinos, GN ;
Pados, DA .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (05) :1050-1057
[22]   Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany [J].
Keller, Karsten ;
Hobohm, Lukas ;
Ebner, Matthias ;
Kresoja, Karl-Patrik ;
Muenzel, Thomas ;
Konstantinides, Stavros, V ;
Lankeit, Mareike .
EUROPEAN HEART JOURNAL, 2020, 41 (04) :522-529
[23]   Online learning with kernels [J].
Kivinen, J ;
Smola, AJ ;
Williamson, RC .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) :2165-2176
[24]  
Klok FA, 2020, THROMB RES, V191, P145, DOI [10.1016/j.thromres.2020.04.013, 10.1016/j.thromres.2020.04.041]
[25]   RESEARCH METHODS IN EPIDEMIOLOGY .5. BIAS IN CASE-CONTROL STUDIES - A REVIEW [J].
KOPEC, JA ;
ESDAILE, JM .
JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 1990, 44 (03) :179-186
[26]   The feature selection bias problem in relation to high-dimensional gene data [J].
Krawczuk, Jerzy ;
Lukaszuk, Tomasz .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2016, 66 :63-71
[27]   Electronic alerts to prevent venous thromboembolism among hospitalized patients [J].
Kucher, N ;
Koo, S ;
Quiroz, R ;
Cooper, JM ;
Paterno, MD ;
Soukonnikov, B ;
Goldhaber, SZ .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 352 (10) :969-977
[28]   Venous thromboembolism in young adults: Findings from the RIETE registry [J].
Lacruz, Beatriz ;
Tiberio, Gregorio ;
Latorre, Ana ;
Caries Villalba, Joan ;
Bikdeli, Behnood ;
Hirmerova, Jana ;
Lorenzo, Alicia ;
Mellado, Meritxell ;
Canas, Inmaculada ;
Monreal, Manuel ;
Adarraga, M. D. ;
Agud, M. ;
Agudo, P. ;
Aibar, M. A. ;
Aibar, J. ;
Amado, C. ;
Arcelus, J., I ;
Ballaz, A. ;
Barba, R. ;
Barron, M. ;
Barron-Andres, B. ;
Bascunana, J. ;
Bolado, C. ;
Blanco-Molina, A. ;
Camon, A. M. ;
Canas, I ;
Carrasco, C. ;
Castro, J. ;
de Ancos, C. ;
del Toro, J. ;
Demelo, P. ;
Diaz-Simon, R. ;
Diaz-Peromingo, J. A. ;
Encabo, M. ;
Falga, C. ;
Farfan, A., I ;
Fernandez-Capitan, C. ;
Fernandez-Criado, M. C. ;
Fernandez-Ovalle, H. ;
Fidalgo, M. A. ;
Font, C. ;
Font, L. ;
Furest, I ;
Garcia, M. A. ;
Garcia-Bragado, F. ;
Garcia-Morillo, M. ;
Garcia-Raso, A. ;
Gavin, O. ;
Gaya-Manso, I ;
Gayol, M. C. .
EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2019, 63 :27-33
[29]   Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates [J].
LeDell, Erin ;
Petersen, Maya ;
van der Laan, Mark .
ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01) :1583-1607
[30]   Acute Pulmonary Embolism in a National Danish Cohort: Increasing Incidence and Decreasing Mortality [J].
Lehnert, Per ;
Lange, Theis ;
Moller, Christian Holdflod ;
Olsen, Peter Skov ;
Carlsen, Jorn .
THROMBOSIS AND HAEMOSTASIS, 2018, 118 (03) :539-546