Effects of the size of silicon grain on the gate-leakage current in nanocrystalline silicon thin-film transistors

被引:3
作者
Mao, Ling-Feng [1 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215021, Peoples R China
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2010年 / 28卷 / 03期
基金
中国国家自然科学基金;
关键词
elemental semiconductors; energy gap; grain size; leakage currents; nanostructured materials; numerical analysis; permittivity; semiconductor thin films; silicon; surface potential; thin film transistors; CHEMICAL-VAPOR-DEPOSITION; LPCVD POLYSILICON MOSFETS; MICROCRYSTALLINE SILICON; QUANTUM DOTS; STRESS;
D O I
10.1116/1.3372328
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The size of silicon grain in silicon thin-film transistors (TFTs) and the dependence of the gate-leakage current have been theoretically investigated after the effect of the silicon-grain size on the surface potential is considered. After the crystal-size effect has been included, the gate-leakage current of nanocrystalline silicon TFTs strongly depends on the silicon-grain size when the silicon-grain size is in the regime of nanoscale. Such a strong dependent relation results from the large changes in the band gap and dielectric constant due to size effects. The numerical calculations also demonstrate that the effect of the silicon-grain size on the gate-leakage current is independent (or weakly dependent) on the device temperature, the gate voltage, and the active-dopant density. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3372328]
引用
收藏
页码:460 / 465
页数:6
相关论文
共 17 条
[1]   Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition [J].
Alpuim, P ;
Chu, V ;
Conde, JP .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2001, 19 (05) :2328-2334
[2]   CALCULATION OF TRANSMISSION TUNNELING CURRENT ACROSS ARBITRARY POTENTIAL BARRIERS [J].
ANDO, Y ;
ITOH, T .
JOURNAL OF APPLIED PHYSICS, 1987, 61 (04) :1497-1502
[3]  
Cabarrocas PRI, 2002, CURR OPIN SOLID ST M, V6, P439, DOI 10.1016/S1359-0286(02)00112-2
[4]   Inverter made of complementary p and n channel transistors using a single directly deposited microcrystalline silicon film [J].
Chen, Y ;
Wagner, S .
APPLIED PHYSICS LETTERS, 1999, 75 (08) :1125-1127
[5]   VALENCE-BAND PHOTOEMISSION FROM A QUANTUM-DOT SYSTEM [J].
COLVIN, VL ;
ALIVISATOS, AP ;
TOBIN, JG .
PHYSICAL REVIEW LETTERS, 1991, 66 (21) :2786-2789
[6]   Analysis of bias stress on thin-film transistors obtained by Hot-Wire Chemical Vapour Deposition [J].
Dosev, DK ;
Puigdollers, J ;
Orpella, A ;
Voz, C ;
Fonrodona, M ;
Soler, D ;
Marsal, LF ;
Pallarès, J ;
Bertomeu, J ;
Andreu, J ;
Alcubilla, R .
THIN SOLID FILMS, 2001, 383 (1-2) :307-309
[7]   ANOMALOUS LEAKAGE CURRENT IN LPCVD POLYSILICON MOSFETS [J].
FOSSUM, JG ;
ORTIZCONDE, A ;
SHICHIJO, H ;
BANERJEE, SK .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1985, 32 (09) :1878-1884
[8]   Finite-size effect on band structure and photoluminescence of semiconductor nanocrystals [J].
Lang, X. Y. ;
Zheng, W. T. ;
Jiang, Q. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (01) :5-9
[9]   Reliability mechanisms of LTPS-TFT with HfO2 gate dielectric:: PBTI, NBTI, and hot-carrier stress [J].
Ma, Ming-Wen ;
Chen, Chih-Yang ;
Wu, Woei-Cherrig ;
Su, Chun-Jung ;
Kao, Kuo-Hsing ;
Chao, Tien-Sheng ;
Lei, Tan-Fu .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (05) :1153-1160
[10]   Microcrystalline silicon. Growth and device application [J].
Matsuda, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 338 :1-12