Legendre spectral collocation technique for fractional inverse heat conduction problem

被引:7
作者
Abdelkawy, M. A. [1 ,2 ]
Babatin, Mohammed M. [1 ]
Alnahdi, Abeer S. [1 ]
Taha, T. M. [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2022年 / 33卷 / 05期
关键词
Inverse problem; spectral collocation method; fractional calculus; ALGORITHM; EQUATION;
D O I
10.1142/S0129183122500656
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For fractional inverse heat conduction problem (FIHCP), this paper introduces a numerical study. For the proposed FIHCP, in addition to the unknown function of temperature, the boundary heat fluxes are also unknown. Related to the two independent variables, the proposed scheme uses a fully spectral collocation treatment. Our technique is determined to be more accurate, efficient and practicable. The obtained results confirmed the exponential convergence of the spectral scheme.
引用
收藏
页数:15
相关论文
共 41 条
  • [1] Spectral Solutions of Linear and Nonlinear BVPs Using Certain Jacobi Polynomials Generalizing Third- and Fourth-Kinds of Chebyshev Polynomials
    Abd-Elhameed, W. M.
    Alkenedri, Asmaa M.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 126 (03): : 955 - 989
  • [2] A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations
    Abd-Elhameed W.M.
    Youssri Y.H.
    Doha E.H.
    [J]. Mathematical Sciences, 2015, 9 (2) : 93 - 102
  • [3] Novel Expressions for the Derivatives of Sixth Kind Chebyshev Polynomials: Spectral Solution of the Non-Linear One-Dimensional Burgers' Equation
    Abd-Elhameed, Waleed Mohamed
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [4] Two spectral Legendre's derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems
    Abdelhakem, M.
    Youssri, Y. H.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 169 : 243 - 255
  • [5] Numerical solutions for fractional initial value problems of distributed-order
    Abdelkawy, M. A.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (07):
  • [6] Jacobi Spectral Collocation Technique for Time-Fractional Inverse Heat Equations
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Babatin, Mohammed M.
    Alnahdi, Abeer S.
    Zaky, Mahmoud A.
    Hafez, Ramy M.
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [7] Abdelkawy MA, 2017, P ROMANIAN ACAD A, V18, P199
  • [8] Jacobi Collocation Approximation for Solving Multi-dimensional Volterra Integral Equations
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Bhrawy, Ali H.
    Tenreiro Machado, Jose A.
    Lopes, Antonio M.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (05) : 411 - 425
  • [9] Chaos in the fractional order nonlinear Bloch equation with delay
    Baleanu, Dumitru
    Magin, Richard L.
    Bhalekar, Sachin
    Daftardar-Gejji, Varsha
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 25 (1-3) : 41 - 49
  • [10] A Legendre-Laguerre-Galerkin Method for Uniform Euler-Bernoulli Beam Equation
    Bassuony, M. A.
    Abd-Elhameed, W. M.
    Doha, E. H.
    Youssri, Y. H.
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (02) : 280 - 295