A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem

被引:86
作者
Cirak, F [1 ]
Ramm, E [1 ]
机构
[1] Univ Stuttgart, Inst Struct Mech, D-70550 Stuttgart, Germany
关键词
D O I
10.1016/S0045-7825(97)00220-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The reciprocal theorem of Betti and Rayleigh or in other notions duality arguments are used to derive error estimators for the finite element approximation of various quantities, including local variables like single displacements and stresses. The proposed error estimator is evaluated solving the set of equations for an additional right-hand side, simply applying the energy norm error estimators two times. Furthermore, a general h-adaptive algorithm is introduced which allows us to optimize meshes with respect to different user specified variables. The efficiency of the current approach is demonstrated for plate and shell examples. (C) 1998 Elsevier Science S.A.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 19 条
[1]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[2]   THE POST-PROCESSING APPROACH IN THE FINITE-ELEMENT METHOD .2. THE CALCULATION OF STRESS INTENSITY FACTORS [J].
BABUSKA, I ;
MILLER, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (06) :1111-1129
[3]   A-POSTERIORI ESTIMATION AND ADAPTIVE-CONTROL OF THE POLLUTION ERROR IN THE H-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (24) :4207-4235
[4]  
Becker R., 1996, E W J NUMER MATH, V4, P237
[5]  
Eriksson K., 1995, Acta Numerica, V4, P105
[6]   ADAPTIVE FINITE-ELEMENT METHODS IN COMPUTATIONAL MECHANICS [J].
JOHNSON, C ;
HANSBO, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 101 (1-3) :143-181
[7]   A-POSTERIORI ERROR ANALYSIS AND ADAPTIVE PROCESSES IN THE FINITE-ELEMENT METHOD .1. ERROR ANALYSIS [J].
KELLY, DW ;
GAGO, JPDR ;
ZIENKIEWICZ, OC ;
BABUSKA, I .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (11) :1593-1619
[8]   ERROR ESTIMATE PROCEDURE IN THE FINITE-ELEMENT METHOD AND APPLICATIONS [J].
LADEVEZE, P ;
LEGUILLON, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (03) :485-509
[9]   Local and pollution error estimation for finite element approximations of elliptic boundary value problems [J].
Oden, JT ;
Feng, YS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 74 (1-2) :245-293
[10]  
Onate E., 1993, Engineering Computations, V10, P307, DOI 10.1108/eb023910