2D Pairwise FLD: A robust methodology for face recognition

被引:5
作者
Guru, D. S. [1 ]
Vikrarn, T. N. [2 ]
机构
[1] Univ Mysore, Dept Studies Comp Sci, Manasagangothri, Mysore 570006, Karnataka, India
[2] Univ Mysore, Int Sch Informat Management, Mysore 570006, Karnataka, India
来源
2007 IEEE WORKSHOP ON AUTOMATIC IDENTIFICATION ADVANCED TECHNOLOGIES, PROCEEDINGS | 2007年
关键词
D O I
10.1109/AUTOID.2007.380600
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a two dimensional pairwise Fisher's linear discriminant (FLD), 2DPairwise FLD is proposed which is employed for face representation and recognition. The proposed methodology is robust as it is based on Pairwise-FLD[1] which is theoretically more efficient than conventional FLD. In addition to this the proposed methodology has a higher recognition rate when benchmarked with contemporary models like 2D-PCA[2], Alt. 2D-PCA[3], 2D-LDA[4], Alt. 2D-FLD[5], 2D 2-FLD[5] and 2D 2-PCA[3] during experimentation.
引用
收藏
页码:99 / +
页数:2
相关论文
共 14 条
[1]  
[Anonymous], 1999, APPROXIMATE PAIRWISE
[2]   An enhanced subspace method for face recognition [J].
Franco, A ;
Lumini, A ;
Maio, D ;
Nanni, L .
PATTERN RECOGNITION LETTERS, 2006, 27 (01) :76-84
[3]   A multi-expert approach for robust face detection [J].
Huang, Lin-Lin ;
Shimizu, Akinobu .
PATTERN RECOGNITION, 2006, 39 (09) :1695-1703
[4]   Multiclass linear dimension reduction by weighted pairwise Fisher criteria [J].
Loog, M ;
Duin, RPW ;
Haeb-Umbach, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (07) :762-766
[5]   (2D)2 FLD:: An efficient approach for appearance based object recognition [J].
Nagabhushan, P ;
Guru, DS ;
Shekar, BH .
NEUROCOMPUTING, 2006, 69 (7-9) :934-940
[6]  
OJA E, 1983, SUBSPACE METHODS PAT
[7]   Geometric linear discriminant analysis for pattern recognition [J].
Ordowski, M ;
Meyer, GGL .
PATTERN RECOGNITION, 2004, 37 (03) :421-428
[8]   How many principal components? stopping rules for determining the number of non-trivial axes revisited [J].
Peres-Neto, PR ;
Jackson, DA ;
Somers, KM .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (04) :974-997
[9]   Generalized null space uncorrelated Fisher discriminant analysis for linear dimensionality reduction [J].
Qin, A. K. ;
Suganthan, P. N. ;
Loog, M. .
PATTERN RECOGNITION, 2006, 39 (09) :1805-1808
[10]  
SAON G, 2000, IEEE INT C AC SPEECH, P623