Metal-based antibody drug conjugates. Potential and challenges in their application as targeted therapies in cancer

被引:33
作者
del Solar, Virginia [1 ]
Contel, Maria [1 ,2 ,3 ,4 ,5 ]
机构
[1] CUNY, Brooklyn Coll, Dept Chem, Brooklyn, NY 11210 USA
[2] CUNY, Grad Ctr, Biol PhD Program, 365 Fifth Ave, New York, NY 10016 USA
[3] CUNY, Grad Ctr, Biochem PhD Program, New York, NY 10016 USA
[4] CUNY, Grad Ctr, Chem PhD Program, 365 Fifth Ave, New York, NY 10016 USA
[5] Univ Hawaii Manoa, Univ Hawaii, Canc Ctr, Canc Biol Program, Honolulu, HI 96822 USA
基金
美国国家卫生研究院;
关键词
Antibody drug conjugates; Metal; Cancer; Targeted therapy; Nanomedicine; GOLD NANOPARTICLES; EGFR ANTIBODY; IN-VITRO; CARBOXYMETHYL-DEXTRAN; BIOLOGICAL EVALUATION; MONOCLONAL-ANTIBODY; POLYMERIC MICELLES; ANTITUMOR AGENTS; GASTRIC-CANCER; TUMOR-CELLS;
D O I
10.1016/j.jinorgbio.2019.110780
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antibody drug conjugates have emerged as a very attractive type of targeted therapy in cancer. They combine the antigen-targeting specificity of monoclonal antibodies (mAbs) with the cytotoxic potency of chemotherapeutics. This review focuses on antibody drug conjugates based on metal-containing cytotoxic payloads. We will also describe antibody drug conjugates (ADCs) in which a metal-based component (mostly metallic nano particles) exerts a relevant function in the ADC (for photodynamic or photothermal therapy, as air-plasma enhancer or chemo-sensitizer, as carrier of other cytotoxic payloads or as an integral part of the linker structure). Challenges and opportunities to increase the translational potential of these ADCs will be discussed.
引用
收藏
页数:14
相关论文
共 100 条
[1]   Site-Specific Antibody-Drug Conjugates: The Nexus of Biciorthogonal Chemistry, Protein Engineering, and Drug Development [J].
Agarwal, Paresh ;
Bertozzi, Carolyn R. .
BIOCONJUGATE CHEMISTRY, 2015, 26 (02) :176-192
[2]   Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer [J].
Ahn, Jooyeon ;
Miura, Yutaka ;
Yamada, Naoki ;
Chida, Tsukasa ;
Liu, Xueying ;
Kim, Ahram ;
Sato, Ryuta ;
Tsumura, Ryo ;
Koga, Yoshikatsu ;
Yasunaga, Masahiro ;
Nishiyama, Nobuhiro ;
Matsumura, Yasuhiro ;
Cabral, Horacio ;
Kataoka, Kazunori .
BIOMATERIALS, 2015, 39 :23-30
[3]  
Alhalili Z., 2018, DRUG DELIVERY LETT, V8, P217
[4]   Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? [J].
Alkilany, Alaaldin M. ;
Murphy, Catherine J. .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (07) :2313-2333
[5]   Gold nanostructures absorption capacities of various energy forms for thermal therapy applications [J].
Amini, Seyed Mohammad .
JOURNAL OF THERMAL BIOLOGY, 2019, 79 :81-84
[6]   Cetuximab potentiates oxaliplatin cytotoxic effect through a defect in NER and DNA replication initiation [J].
Balin-Gauthier, D. ;
Delord, J-P ;
Pillaire, M-J ;
Rochaix, P. ;
Hoffman, J-S ;
Bugat, R. ;
Cazaux, C. ;
Canal, P. ;
Allal, B. C. .
BRITISH JOURNAL OF CANCER, 2008, 98 (01) :120-128
[7]   Novel anticancer targets: revisiting ERBB2 and discovering ERBB3 [J].
Baselga, Jose ;
Swain, Sandra M. .
NATURE REVIEWS CANCER, 2009, 9 (07) :463-475
[8]  
BECK E, 1994, CELL BIOPHYS, V24-5, P163, DOI 10.1007/BF02789227
[9]   Gold-Based Nanoparticles Systems in Phototherapy - Current Strategies [J].
Blaszkiewicz, Paulina ;
Kotkowiak, Michal .
CURRENT MEDICINAL CHEMISTRY, 2018, 25 (42) :5914-5929
[10]   Reactions inside nanoscale protein cages [J].
Bode, Saskia A. ;
Minten, Inge J. ;
Nolte, Roeland J. M. ;
Cornelissen, Jeroen J. L. M. .
NANOSCALE, 2011, 3 (06) :2376-2389