Hand gesture vocabulary design: A multicriteria optimization

被引:0
作者
Stern, HI [1 ]
Wachs, JP [1 ]
Edan, Y [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Ind Engn & Management, IL-84105 Beer Sheva, Israel
来源
2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7 | 2004年
关键词
hand gesture; optimal vocabulary; human interfaces; multiobjective decision; multicriteria optimization; man-machine interaction; intuitive interfaces;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A global approach to hand gesture vocabulary (G V) design is proposed which includes human as well as technical design factors. The human centered desires (intuitiveness, comfort) of multiple users are implicitly represented through indices obtained from ergonomic studies representing the psycho-physiological aspects of users. The main technical aspect considered is that of machine recognition of gestures. We believe this is the first conceptualization of the optimal hand gesture design problem in analytical form. The problem is formulated as a multicriteria optimization problem (MCOP) for which a 3D representation of the solution space is used to display candidate solutions, as well as Pareto optimal ones. A computational example is given for the design of a small robot command G V using the MCOP procedure.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
[31]   Multicriteria Approach to Bilevel Optimization [J].
J. Fliege ;
L. N. Vicente .
Journal of Optimization Theory and Applications, 2006, 131 :209-225
[32]   Application of multicriteria optimization in layout optimization of structures [J].
Kaliszky, S. ;
Logo, J. .
METAL STRUCTURES: DESIGN, FABRICATION, ECONOMY, 2003, :271-275
[33]   (ε-)EFFICIENCY IN MULTICRITERIA FRACTIONAL OPTIMIZATION [J].
El Maghri, Mounir ;
Sellak, Haddou .
Applied Set-Valued Analysis and Optimization, 2025, 7 (02) :191-207
[34]   Multicriteria approach to bilevel optimization [J].
Fliege, J. ;
Vicente, L. N. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (02) :209-225
[35]   Hand Component Decomposition for the Hand Gesture Recognition Based on FingerPaint Dataset [J].
Na, In Seop ;
Kim, Soo Hyung ;
Lee, Chil Woo ;
Duong, Nguyen Hai .
2019 ELEVENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2019), 2019, :564-566
[36]   Quantitative Analysis of the Method of Myoelectric Hand Prosthesis Hand Gesture Conversion [J].
Kim S.-G. ;
Jung S.-Y. ;
Kim K.-H. ;
Park S.-H. .
Journal of Institute of Control, Robotics and Systems, 2022, 28 (01) :13-21
[37]   A Computational Multicriteria Optimization Approach to Controller Design for Physical Human-Robot Interaction [J].
Aydin, Yusuf ;
Tokatli, Ozan ;
Patoglu, Volkan ;
Basdogan, Cagatay .
IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (06) :1791-1804
[38]   Hand Gesture Recognition towards Enhancing Accessibility [J].
Cardoso, Tiago ;
Delgado, Joao ;
Barata, Jose .
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON SOFTWARE DEVELOPMENT AND TECHNOLOGIES FOR ENHANCING ACCESSIBILITY AND FIGHTING INFO-EXCLUSION, 2015, 67 :419-429
[39]   Hand Gesture Recognition Using Deep Learning [J].
Hussain, Soeb ;
Saxena, Rupal ;
Han, Xie ;
Khan, Jameel Ahmed ;
Shin, Hyunchul .
PROCEEDINGS INTERNATIONAL SOC DESIGN CONFERENCE 2017 (ISOCC 2017), 2017, :48-49
[40]   Hand gesture recognition and voice controlled robot [J].
Meghana, M. ;
Kumari, Ch Usha ;
Priya, J. Sthuthi ;
Mrinal, P. ;
Sai, K. Abhinav Venkat ;
Reddy, S. Prashanth ;
Vikranth, K. ;
Kumar, T. Santosh ;
Panigrahy, Asisa Kumar .
MATERIALS TODAY-PROCEEDINGS, 2020, 33 :4121-4123